Skip to main content

Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass

  • Conference paper
Sixteenth International Seaweed Symposium

Part of the book series: Developments in Hydrobiology ((DIHY,volume 137))

  • 721 Accesses

Abstract

Biosorption, the passive accumulation of metal ions by biomass, can be used for purifying metal bearing wastewater. Seaweeds represent a readily available source of biosorbent material that possesses a high metal binding capacity. For example, Sargassum can accumulate 2 mequiv of Cd per gram of biomass i.e. 10% of its dry weight. Binding of Cd and Cu by Sargassum is an ion exchange process involving both covalent and ionic bonds. The amount of cations bound covalently or by complexation can be predicted using multi-component sorption isotherms involving 2 types of binding sites, carboxyl and sulphate. A Donnan model was used to account for the effect of ionic strength and electrostatic attraction. The use of a multi-component isotherm that included one term for Na binding was less appropriate than the Donnan model for modelling ionic strength effects. It was possible to predict metal and proton binding as a function of the pH value, metal concentration and ionic strength of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Bt :

total number of binding sites B mequiv g−1

Ct :

total number of carboxyl sites C mequiv g−1

I:

ionic strength mM

Kj :

lumped equilibrium constant for binding of ion j L mmol−1

KCj :

equilibrium constant for binding of ion j to C-sites L mmol−1

KSj :

equilibrium constant for binding of ion j to S-sites L mmol−1

m:

mass of biosorbent g

pKa :

-log of acid dissociation constant —

qj :

total amount of cation j bound (covalent + electrostatic) to all binding sites mequiv g−1

St :

total amount of sulphate sites S mequiv g−1

V:

volume of solution L

Vm :

specific cation binding volume per dry weight of biosorbent mL g−1

Yv :

fitting parameter for Vm mL mequiv−1

λ:

concentration factor (intraparticle / bulk)

[ ]:

concentration of molecular species in brackets mM

References

  • Bartschat BM, Cabaniss SE, Morel FMM (1992) Oligoelectro-lyte model for cation binding by humic substances. Envir. Sci. Technol. 26: 284–294.

    Article  CAS  Google Scholar 

  • Buffle J (1988) Complexation Reactions in Aquatic Systems: An Analytical Approach. Ellis Horwood Ltd., Chichester, UK: 156–329.

    Google Scholar 

  • Crist RH, Martin JR, Carr D, Watson JR, Clarke HJ, Crist DR (1994) Interactions of metals and protons with algae. 4. Ion exchange vs. adsorption models and a reassessment of Scatchard plots; ion-exchange rates and equilibria compared with calcium alginate. Envir. Sci. Technol. 28: 1859–1866

    Article  CAS  Google Scholar 

  • Crist RH, Oberholser K, Schwartz D, Marzoff J, Ryder D, Crist DR (1988) Interactions of metals and protons with algae. Envir. Sci. Technol. 22: 755–760.

    Article  CAS  Google Scholar 

  • Ferguson J, Bubela B (1974) The concentration of Cu (II), Pb (II), and Zn (II) from aqueous solutions by particulate algal matter. Chem. Geol. 13: 163–186.

    Article  CAS  Google Scholar 

  • Fourest E, Volesky B (1996) Contribution of sulphonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Envir. Sci. Technol. 30: 277–282.

    Article  CAS  Google Scholar 

  • Greene B, McPherson R, Damali D (1987) Algal sorbents for selective metal ion recovery. In: Patterson JW, Pasino R (eds), Metals Speciation, Separation and Recovery, Lewis, Chelsea, MI: 315–338.

    Google Scholar 

  • Haug A (1961) Dissociation of alginic acid. Acta Chem. Scand. 15: 950–952.

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng. 41: 819–825.

    Article  PubMed  CAS  Google Scholar 

  • Katchalsky A, Michaeli I (1955) Polyelectrolyte gels in salt solutions. J. Polym. Sci. 15: 69–86.

    Article  CAS  Google Scholar 

  • Kinniburgh DG, Milne CJ, Benedetti MF, Pinheiro JP, Filius J, Koopal LK, Van Riemsdijk WH (1996) Metal ion binding by humic acid: Application of the NICA-Donnan model. Envir. Sci. Technol. 30: 1687–1698.

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989) The mechanism of cobalt biosorption. Biotechnol. Bioengng 33: 823–831.

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361–1403.

    Article  CAS  Google Scholar 

  • Lee RE (1980) Phycology. Cambridge University Press, Cambridge, UK: 224–225.

    Google Scholar 

  • Lin FG, Marinsky JA (1993) A Gibbs-Donnan-based interpretation of the effect of medium counterion concentration levels on the acid dissociation properties of alginic acid and chondroitin sulfate. React. Polym. 19: 27–45.

    Article  CAS  Google Scholar 

  • Marinsky JA (1987) A two-phase model for the interpretation of proton and metal ion interaction with charged polyelectrolyte gels and their linear analogs. In Stumm W (ed.), Aquatic Surface Chemistry, Wiley Interscience, John Wiley and Sons, NY: 49–81.

    Google Scholar 

  • Ramelow GJ, Fralick D, Zhao Y. (1992) Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72: 81–93.

    CAS  Google Scholar 

  • Schiewer S, Volesky B (1995) Modelling of the proton-metal ion exchange in biosorption. Envir. Sci. Technol. 29: 3049–3058.

    Article  CAS  Google Scholar 

  • Schiewer S, Volesky B (1997a) Ionic strength and electrostatic effects in biosorption of protons. Envir. Sci. Technol. 30: 1863–1871.

    Article  Google Scholar 

  • Schiewer S, Volesky B (1997b) Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Envir. Sci. Technol. 30: 2478–2485.

    Article  Google Scholar 

  • South GR, Whittick A (1987) Introduction to Phycology. Blackwell Scientific Publications, Oxford, UK: 61–62.

    Google Scholar 

  • Tipping E (1993) Modelling the competition between alkaline earth cations and trace metal species for binding by humic substances. Envir. Sci. Technol. 27: 520–529.

    Article  CAS  Google Scholar 

  • Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol. Bioengng 23: 583–604.

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol. Progr. 11:235–250.

    Article  CAS  Google Scholar 

  • Westall JC, Jones JD, Turner GD, Zachara JM (1995) Models for association of metal ions with heterogeneous environmental sorbents: I. Complexation of Co(II) by leonardite humic acid as a function of pH and NaClO4 concentration. Envir. Sci. Technol. 29: 951–959.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joanna M. Kain Murray T. Brown Marc Lahaye

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schiewer, S. (1999). Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass. In: Kain, J.M., Brown, M.T., Lahaye, M. (eds) Sixteenth International Seaweed Symposium. Developments in Hydrobiology, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4449-0_73

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4449-0_73

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5909-1

  • Online ISBN: 978-94-011-4449-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics