Skip to main content

On the Twist of Emerging Flux Loops in the Solar Convection Zone

  • Chapter
Helioseismic Diagnostics of Solar Convection and Activity
  • 164 Accesses

Abstract

We perform numerical simulations of emerging flux loops in the solar convective envelope based on a weakly twisted thin flux tube model recently derived by Longcope and Klapper, generalizing the original formulation for the dynamics of untwisted thin flux tubes by Spruit. The generalized formulation includes the description of torsional Alf vén waves and takes into account the coupling of the writhing motion of the tube axis to the change in the flux tube twist based on the requirement of global helicity conservation of the closed thin flux tube. In this model, the twist of the thin flux tube is described by a quantity q defined as the angular rate of field-line rotation about the tube axis per unit length of the tube. We examine the evolution of twist along Ω-shaped emerging flux loops which are formed as a result of the non-linear growth of the Parker instability of toroidal magnetic flux tubes at the base of the solar convection zone. We find that: (1) In the northern hemisphere, a left-handed twist is generated in the flux tubes as a result of the right-handed tilt or writhe of the emerging loops induced by the Coriolis force. The generated twist increases with the latitude of emergence over the range from 0° to about 38° latitude, but then decreases when the emerging latitude exceeds 38°, because of a change in the preferred eruption pattern. The magnitude of the generated twist q is very small, ≗ 2 × 10-4 rad Mm-1, more than an order of magnitude smaller than the observed amplitude of twist (~ 0.01 rad Mm-1) in solar active regions. (2) For a toroidal flux ring with a uniform initial twist q 0 along the ring, the twist amplitude |q| at the apex of the emerging loop decrease by a factor of about 0.67 because of the stretching of the loop, as it rises from the base of the convection zone to about 20 Mm below the photosphere, at which depth the flux tube can no longer be considered thin. However, because of the more rapid increase of the tube cross-sectional radius a with height, |qa|, which corresponds to the ratio between the azimuthal field to the axial field B θ /B l of the tube, increases by a factor of about 2.5 at the apex of the loop, as it rises over the same distance. (3) Because of the effect of the Coriolis force, the distribution of twist along the emerging loop is asymmetric between the leading (in the direction of rotation) and the following sides of the loop. Both |q| and |qa| are greater at the following side than the leading at any depth. Based on the evolution of twist along emerging flux loops, we discuss possible constraints on the twist q 0 of initial toroidal flux tubes at the base of the convection zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fan, Y., Gong, D. (2000). On the Twist of Emerging Flux Loops in the Solar Convection Zone. In: Duvall, T.L., Harvey, J.W., Kosovichev, A.G., Švestka, Z. (eds) Helioseismic Diagnostics of Solar Convection and Activity. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4377-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4377-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5882-7

  • Online ISBN: 978-94-011-4377-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics