Skip to main content

Part of the book series: NATO Science Series ((ASEN2,volume 72))

Abstract

An overview shall be given on operational methods and steps involved, when optical remote sensing data shall be digitally processed to result in a land use data base, which certainly forms one of the most prominent tasks of remote sensing. Questions of terminology (especially land use and land cover) will be covered, as well as data selection and acquisition, noise correction, geo-coding, classification, post-processing and map production. Obviously, only guide-lines can be given and it would be ways beyond the scope of this article to cover the whole spectrum of interesting approaches. It must be pointed out, that high quality demands call for an adequate regard of ancillary data; their use is still hampered by technical barriers as disperse storage and solely analogue availability, various geometric projections, and others. Moreover, commercial image processing software for use with remote sensing data does hardly provide any tools to imbed a-priory knowledge. Geo-scientific knowledge on vegetation patterns, crop-rotation systems in agriculture and phenological information around the time of image acquisition (‘dynamic vegetation models’) can significantly improve the classification results. The core task is the design of an efficient classification method, which must be carefully adapted to the class specifications. A ‘brute-force’ approach aiming at results in a single step with one universal classifier cannot be recommended. Examples for a more sophisticated solution are basically taken from a large-area project for the state of Saxony (Germany). A combination of default functions and additional procedures was allowing to profit from a selective choice of spectral bands, classifiers and (post-)processing steps at every node of a hierarchical classification tree. Wherever local image features were performing insufficiently, textural or form attributes have been included. The cited project was accompanied by the generation of a set of 15 land-use maps in a standardised layout. Finally, some remarks will be given concerning a potential project for a comprehensive land-use map in a less-developed area like Albania.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gierloff-Emden, H.-G.(1989): Fernerkundungskartographie mit Satellitenaufnahmen.- Allgemeine Grundlagen und Anwendungen. Bd. IV/1 of ‘Enzyklopädie Die Kartographie und ihre Randgebiete’, Franz Deuticke, Wien.

    Google Scholar 

  2. Prechtel, N. (1996): Flächennutzungskartierung mit Satellitenaufnahmen. Wissenschaftliche Zeitschrift der TU Dresden, 1/96 pp. 62–66.

    Google Scholar 

  3. Wieneke, F. (1988): Satellitenbildauswertung - Methodische Grundlagen und ausgewählte Beispiele. Münchener Geographische Abhandlungen, A38, 169 p.

    Google Scholar 

  4. Skole, D. (1996): Land Use and Land Cover Change. - The Earth Observer, 8/3, EOS, pp. 36–40.

    Google Scholar 

  5. Konecny, G. (1995): Satelliten-Fernerkundung und Kartographie. - Geo-Informations-Systeme, 2/1995, pp. 3–12.

    Google Scholar 

  6. Bodechtel, J. and Zilger, J. (1995): MOMS - History, Concepts,Goals. - In: Lanzl, F. (ed.) Proceedings of the MOMS-02 Symposium, Cologne, July, 5th-7th, 1995, EARSeL, Paris, pp. 12–25.

    Google Scholar 

  7. Kontoes, C. and Stackenborg, J. (1990): Availability of Cloud-Free Landsat Images for Operational Projects. International Journal of Remote Sensing, 11/9 pp. 1599–1608.

    Google Scholar 

  8. Orthaber, H. (1999): Bilddatenorientierte atmosphärische Korrektur und Auswertung von Satellitenbildern vegetationsdominierter Gebiete. Kartographische Bausteine 16, Dresden, in print.

    Google Scholar 

  9. Lieth, H. (1974): Phenology and Seasonality Modelling. Ecological Studies, 8, Springer, Heidelberg/New York, 444 p.

    Google Scholar 

  10. Deutscher Wetterdienst (DWD). Agrarmeteorologischer Wochenhinweis für das Gebiet der Bundesrepublik Deutschland, Offenbach. Comp. http://www.dwd.de/services/lw_home.html Phänologische Beobachtungen, comp.: http://www.dwd.de/services/LWI/WOHIWEI/muster/intrawo.html

  11. Price, J. C. (1994): How Unique are Spectral Signatures?. Remote Sensing of Environment, 49, pp. 181–186.

    Article  Google Scholar 

  12. Steiner, D. (1961): Die Jahreszeit als Faktor bei der Landnutzungsinterpretation. Landeskundliche Luftbildauswertung im mitteleuropäischen Raum, 5 Bundesanstalt für Landeskunde und Raumforschung, Bad Godesberg.

    Google Scholar 

  13. Preissler, H., Bohbot, H., Mehl, W. and Sommer, S. (1998): MedSpec - A Spectral Database as a Tool to Support the Use of Imaging Spectroscopy Data for Environmental Monitoring. In: Schaepman, M., Schlapfer, D. and Itten, K. eds.): 1st EARSeL Workshop on Imaging Spectroscopy. EARSeL, Paris, pp. 455–462.

    Google Scholar 

  14. Price, J.C. (1995): Examples of High resolution Visible and Near Infrared Reflectance Spectra and a Standardized Collection for Remote Sensing Studies. Intern. Journal of Remote Sensing, 6/95, pp. 993–1000.

    Google Scholar 

  15. http://www.geog.ucLac.uk/-mdisney/brdf.html/ (BRDF-related sites on the WWW).

  16. Meier, U. (1999) Growth Stages for Mono-and Dycotyledonous Plants. BBCH-Monography Federal Biological Research Centre for Agriculture and Forestry, Parey, Hamburg/Berlin.

    Google Scholar 

  17. http://earth.esa.int80/aboutdescw

  18. Costa, N. (2000): WWW Information Services for Earth Observation and Environmental Information. This issue.

    Google Scholar 

  19. Ehrhardt (1990): Modellorientierte Entzerrung von Thematic-Mapper-Rohdaten. DLR Fachbericht 9055. Oberpfaffenhofen, 103 p.

    Google Scholar 

  20. Lei, Q., Henkel, J., Frei, M., Mehl, H., Lörcher, G. and Bodechtel, J. (1995): Radiometric Noise Correction of Panchromatic High Resolution Data of MOMS-02. - In: Lanzl, F. (ed.) Proceedings of the MOMS-02 Symposium, Cologne, July, 5th-7th, 1995, EARSeL, Paris, pp. 303–307.

    Google Scholar 

  21. Buchroithner, M.F. (1989): Fernerkundungskartographie mit Satellitenaufnahmen.- Digitale Methoden, Reliefkartierung, geowissenschaftliche Anwendungsgebiete. Bd IV/2 of ‘Enzyklopädie Die Kartographie und ihre Randgebiete’, Franz Deuticke, Wien.

    Google Scholar 

  22. Banon, G.J.F., Barrerea, J. (1989): Morphological Filtering for Stripping Correction of SPOT Images. Photogrammetria, 43 pp. 195–205.

    Google Scholar 

  23. Hill, J. (2000): Resource Assessments and Land Degradation Monitoring with Earth Observation Satellites. This issue.

    Google Scholar 

  24. Richter, R. (1996): A Spatially-Adaptive Fast Atmospheric Correction Algorithm. ERDAS IMAGINE - ATCOR2 User Manual. Geosystems (Distr.), Germering.

    Google Scholar 

  25. Toutin, T. (2000): Map Making Using remote Sensing Image Data. This issue.

    Google Scholar 

  26. Almer, A., Raggam, J. and Strobl, D. (1991): High-Precision Geocoding of Spaceborne Remote Sensing Data of High-Relief terrain. Proceedings ACMS/ASPRS/AutoCarto Annual Convention, Baltimore, Ma, March 25th-29th.

    Google Scholar 

  27. Todd, W.J., Gehring, D.G., Hamann, J.F. (1980): Landsat Wildland Mapping Accuracy. Photogrammetric Engineering and Remote Sensing, 46/4 pp. 509–520.

    Google Scholar 

  28. Anderson, J. R., Hardy, E. E., Roach, J. T. and Wittmer, R. E. (1976): A Land Use and Land Cover Classification System for use with remote sensing Data. USGS Professional Paper, 964 Washington.

    Google Scholar 

  29. Prechtel, N. (1997): CORINE-Bodenbedeckungsdaten für Ostdeutschland aus Anwendersicht. Zeitschrift für Photogrammetrie und Fernerkundung, 3, pp. 92–101.

    Google Scholar 

  30. Prechtel, N. (1995): A Comprehensive 1: 100000 Land Use Map Series for the Federal State of Saxony (Germany) from Satellite Imagery. - Proceedings of 17th Intemational Cartographic Conference in Barcelona, Sept., 3rd-9th, Vol. II, ICA, pp. 2281–2287.

    Google Scholar 

  31. Prechtel, N. (1996): Flächennutzungskartierung mit Satellitenaufnahmen. Wissenschaftliche Zeitschrift der TU Dresden, 45/1 pp. 62–66.

    Google Scholar 

  32. Schulz, B.-S.(1990): Analyse der statistischen Voraussetzungen zur Klassifizierung multispektraler Daten. - Zeitschrift für Photogrammetrie und Fernerkundung, 3/1990 pp. 66–74.

    Google Scholar 

  33. Prechtel, N. und O. Bringmann (1998): Near-Real-Time Road Extraction from Satellite Images Using Vector Reference Data. Intemational Archives of Photogrammetry and Remote Sensing, Vol. 23, Part 2 = Proceedings of the Commission II Symposium Data Integration: Systems and Techniques, Cambridge, July 13th – 17th, pp. 229–234.

    Google Scholar 

  34. Carlotto, M.J. (1998): Spectral Shape Classification of Landsat Thematic Mapper Imagery. Photogrammetric Engineering and Remote Sensing, 64/9 pp. 905–913.

    Google Scholar 

  35. Steinbrecher, R. (1993): Bildverarbeitung in der Praxis. Oldenbourg Verlag, München.

    Google Scholar 

  36. . Gangkofner, U. (1996): Methodische Untersuchungen zur Vor-und Nachbereitung der Maximum Likelihood Klassifikation optischer Fernerkundungsdaten. Münchener Geographische Abhandlungen, B27.

    Google Scholar 

  37. Rössler, G. (1989): Almvegetationsklassifizierung mit Satellitenbildern. Diploma Thesis, Vienna University of Technology, Chair of Photogrammetry and Remote Sensing.

    Google Scholar 

  38. Gorte, B. G. H. (1999): Local Statistics in Supervised Classification. In: Nieuwenhuis, G. J. A., Vaughan, R. A., Molenaar, M. (eds.): Operational Remote Sensing for Sustainable Development. Balkema, Rotterdam, pp. 325–330.

    Google Scholar 

  39. Congalton, R. G. (1991): A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37/91 pp. 35–46.

    Google Scholar 

  40. Meisel, G., Knapp, C., Buchroithner, M. und N. Prechtel (1995): Detection of Ecologically Relevant Landuse Changes in the Agglomeration of Dresden Using Multitemporal Landsat-TM-Data. - In: Proceedings of EARSeL Workshop on Pollution Monitoring and GIS in Brandys nad Labem, May, 15th-18th, pp. 158–167, EARSeL, Paris.

    Google Scholar 

  41. Büttner, G. (2000): Land Cover - Land Use Mapping within the European CORINE Programme. This issue.

    Google Scholar 

  42. Lüttig, G. (1979): GeoscientifIc Maps as a Basis for Land Use Planning. Geologiska Föreningens i Stockholm Förhandlingar, 1 pp. 65–69.

    Google Scholar 

  43. Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV) (1988): ATKIS-Gesamtdokumentation, Hannover.

    Google Scholar 

  44. http://www.ordsvy.gov.uk/home/index.html: - Homepage British Ordnance Survey,Southampton.

  45. http://www.ign.fr/ - Homepage Institut Géographique National, Paris.

  46. Alberti, J. (1994): Beiträge der Satelliten-Fernerkundung zur topographischen und thematischen Kartierung. - Bollmann et al. (eds.): Umweltiinformation und Karte. Sonderband zum 43. Deutschen Kartographentag in Trier. pp. 27–35.

    Google Scholar 

  47. Talani, R. (1998): Kartographie in Albanien. Kartographische Nachrichten, 6/98 pp. 228–234.

    Google Scholar 

  48. Baetz, W. (2000): Current Remote Sensing Availability. This issue.

    Google Scholar 

  49. Konecny, G. (2000): Overview of Possibilities with Future Satellite Image Data. This issue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Prechtel, N. (2000). Computer-Assisted Large Area Land use Classifications with Optical Remote Sensing. In: Buchroithner, M.F. (eds) Remote Sensing for Environmental Data in Albania: A Strategy for Integrated Management. NATO Science Series, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4357-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4357-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6528-0

  • Online ISBN: 978-94-011-4357-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics