Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 74))

Abstract

Success in the three conceptually related fields of metabolic engineering, drug discovery, and functional genomics rests on understanding, or discovering, the relationship among activities encoded on particular genes and the phenotype of the organism. In spite of detailed catalogues of complicated networks in individual cells, in turn embedded in additional layers of complicated signalling systems in cell populations, assuming that biology is simple is common, as manifested by the terms “rate-limiting step”, “drug target”, and “function of a gene.” All of these naive concepts are based on the assumption that a single gene’s product has a simply understood and substantial effect on the function of an organism. Why do these simplistic concepts and approaches survive, and to a large extent dominate, contemporary science, pharmaceutical research and development, and biotechnology investment? The answers seem to be: (i) these concepts sometimes work (particularly at the peripheries of cellular networks, e.g. within unbranched terminal biosynthetic pathways, or for certain receptors), and (2) not enough people so far understand otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, J. E. (1999) Lessons from metabolic engineering for functional genomics and drug discoveryNature Biotechnol. 17616–618

    Article  CAS  Google Scholar 

  • Cane, D. E., Walsh, C. T. & Khosla, C. (1998) Harnessing the biosynthetic code: combinations, permutations, and mutationsScience282, 63–68

    Article  PubMed  CAS  Google Scholar 

  • Fiaux, J., Andersson, C. I. J., Holmberg, N., Billow, L.et al. (1999) 13CNMR flux ratio analysis ofEscherichia coilcentral carbon metabolism in microaerobic bioprocessesJ. Am. Chem. Soc.121, 1407–1408

    Article  CAS  Google Scholar 

  • Frederickson, A. G. (1976) Formulation of structured growth modelsBiotechnol. Bioeng.18, 1481–1486

    Article  Google Scholar 

  • Fussenegger, M., Dätwyler, D., Schlatter, S., Mazur, X. & Bailey, J. E. (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cellsNature Biotechnol.16, 468–472

    Article  CAS  Google Scholar 

  • Goldenfeld, N. & Kadanoff, L. P. (1999) Simple lessons from complexityScience284, 87–89 Hatzimanikatis, V. & Bailey, J. E. (1997) Effects of spatiotemporal variations on metabolic control: approximate analysis using (log) linear kinetic modelsBiotechnol. Bioeng.54, 91–104

    Google Scholar 

  • Hatzimanikatis, V. & Bailey, J. E. (1997) Effects of spatiotemporal variations on metabolic control: approximate analysis using (log) linear kinetic models, Biotechnol. Bioeng. 54, 91–104

    Google Scholar 

  • Heinrich, R. & Rapoport, T. A. (1974) A linear steady state treatment of enzymatic chains: general properties, control and effector strengthEur. J. Biochem. 4289–95

    Article  PubMed  CAS  Google Scholar 

  • Kacser, H. & Burns, J. A. (1973) The control of fluxSymp. Soc. Exp. Biol.27, 65–104

    PubMed  CAS  Google Scholar 

  • Lee, S. B. & Bailey, J. E. (1984a) A mathematical model for Xdv plasmid replication: analysis of wild-type plasmidPlasmid 11151–165

    Article  CAS  Google Scholar 

  • Lee, S. B. & Bailey, J. E. (1984b) Genetically structured models for lac promoter-operator function in the chromosome and in multicopy plasmids: lac operator functionBiotechnol. Bioeng. 26 1372–1382

    Article  CAS  Google Scholar 

  • Sauer, U., Hatzimanikatis, V., Bailey, J. E., Hochuli, M. et al. (1997) Metabolic fluxes in riboflavin-producingBacillus subtilis Nature Biotechnol.15,448–452

    Article  CAS  Google Scholar 

  • Schlosser, P. M. & Bailey, J. E. (1990) An integrated modelling-experimental strategy for the analysis of metabolic pathways, Math.Biosci.100, 87–114

    Google Scholar 

  • Schlosser, P. M., Holcomb, T. & Bailey, J. E. (1993) Determining metabolic sensitivity coefficients directly from experimental dataBiotechnol. Bioeng. 411027–1038

    Article  PubMed  CAS  Google Scholar 

  • Varner, J. & Ramkrishna, D. (1999) Metabolic engineering from a cybernetic perspective: aspartate family of amino acidsMetabol. Eng. 188–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bailey, J.E. (2000). Life is Complicated. In: Cornish-Bowden, A., Cárdenas, M.L. (eds) Technological and Medical Implications of Metabolic Control Analysis. NATO Science Series, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4072-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4072-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6189-3

  • Online ISBN: 978-94-011-4072-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics