Skip to main content

Thin Amorphous Intergranular Layers at Mineral Interfaces in Xenoliths: the Early Stage of Melting

  • Chapter
Physics and Chemistry of Partially Molten Rocks

Part of the book series: Petrology and Structural Geology ((PESG,volume 11))

Abstract

The presence of intergranular glassy layers and pockets along mineral interfaces, on microfractures and as inclusions in minerals in mantle peridotite xenoliths from different locations is revealed by optical microscopy and transmission electron microscopy (TEM). All these glasses represent former melts, that is confirmed by electron diffraction as well as their typical geochemical signatures. Often very thin glass layers are present on grain boundaries and show characteristic chemical compositions that strongly depend on the adjacent minerals. The composition of these layers differs distinctly from the bulk melt composition of partial melt experiments or from the compositions of wider melt pools of glasses observed in other xenoliths. Furthermore, a relation of these glasses to the adjacent host basalt can be excluded by the distinctly different geochemistry of the melts. The chemical composition of the melt changes with increasing thickness of the glass layers, which is due to mixing processes of the different types of glasses in the xenoliths. Wider melt films (>1 µm) are more similar to glasses observed in large melt pools and veins given in the literature as well as partial melting experiments. Thus, the chemical composition varies from that of the very first melt at different interfaces to the bulk composition of partial melts created by experiments depending on the melt film thickness. Melts are probably formed by grain boundary melting due to lattice mismatch and impurity segregation in the xenolith triggered by decompression processes during the uplift of the xenolith. This point is consistent with the corrosion textures and the absence of chemical equilibrium between melt and adjacent olivine crystals. Chemical equilibrium is only found for very few melt films along olivine boundaries and melt inclusions in olivine neoblasts. These early melts were generated during thermal overprint and dynamic recrystallisation of the xenolith in the mantle. The occurrence of melt on grain boundaries has important geological and petrological implications. Intergranular layers give an insight into the very first melting processes and the development of melt composition with time and degree of partial melting. Furthermore, melt films on interfaces are suggested to have an important significance for the rheology of the mantle by distinctly increasing the creep rate of the rock. Finally, diffusion processes may be distinctly enhanced by the presence of melt and may give way for a very fast reequilibration of the mineral chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behrmann, J., G. Drozdzewski, T. Heinrichs, M. Huch, W. Meyer, and O. Oncken, Crustal balanced cross sections through the Variscan fold belt, Germany: the central EGT-segment, Tectonophysics, 196, 1–21, 1991.

    Article  Google Scholar 

  • Bonnell, D.A., T.Y. Tien, and M. Rühle, Controlled crystallisation of the amorphous phase in silicon nitride ceramics, J. Am. Ceram. Soc., 70, 460–465, 1987.

    Article  Google Scholar 

  • Brey, G.P., and T. Köhler, Geothermobarometry in four phase lherzolite. II. New thermobarometers, and practical assessment of existing thermobarometers, J. Petrol., 31, 1353–1378, 1990.

    Google Scholar 

  • Brydson R., S.C. Chen, F.L. Riley, S.J. Milne, X. Pan, and M. Rühle, Microstructure and chemistry of intergranular glass films in liquid-phase-sintered alumina, J. Am. Ceram. Soc. 81, 369–379, 1998.

    Article  Google Scholar 

  • Cahn, J.W., and J.E. Hillard, Free energy of a non uniform system. I. Interfacial free energy., J. Chem. Phys., 28, 258, 1958.

    Article  Google Scholar 

  • Carter C.B., and D.L. Kohlstedt, Electron irradiation damage in natural quartz grains, Phys. Chem. Minerals, 7, 110–116, 1981.

    Article  Google Scholar 

  • Chakraborty S., Diffusion in silicate melts, in: Reviews in Mineralogy 32, edited by J.F. Stebbins, P.F. McMillan, and D.B. Dingwell, pp. 411–503, 1995.

    Google Scholar 

  • Chiang, Y., and W.D. Kingery, Grain boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel: II effects of grain boundary nonstoichiometry, J. Am. Ceram. Soc., 75,1153–1158, 1990.

    Article  Google Scholar 

  • Cinibulk, M.K., G. Thomas, and S.M. Johnson, Fabrication and secondary phase crystallisation of RE disilicate-silicon nitride ceramics, J. Am. Ceram. Soc., 75, 2037–2043, 1992.

    Article  Google Scholar 

  • Clarke, D.R., On the equilibrium thickness of intergranular glass phases in ceramic materials, J. Am. Ceram. Soc., 70, 15–22, 1987.

    Article  Google Scholar 

  • Clarke, D.R., T.M. Shaw, A.P. Philipse, and G.G. Horn, Possible electric double-layer contribution to the equilibrium thickness of intergranular glass films in polycrystalline ceramics, J. Am. Ceram. Soc., 76, 1201–1204, 1993.

    Article  Google Scholar 

  • Das Chowdhury, K., R.W. Carpenter, W. Braue, J. Liu, and H. Ma, Chemical and structural widths of interface and grain boundaries in silicon nitride-silicon carbide whisker composites, J. Am. Ceram. Soc., 78, 2579–2592, 1995.

    Article  Google Scholar 

  • Cmíral, M., J.D. Fitz Gerald, and U.H. Faul, A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study, Contrib. Mineral. Petrol., 130, 336–345, 1998.

    Article  Google Scholar 

  • Cooper, R.F., and D.L. Kohlstedt, Interfacial energies in the olivine-basalt system, in: High pressure research in geophysics, edited by S. Akimoto, and M.H. Manghnani, pp. 217–228, Adv. Earth Planet. Sci., 1982.

    Chapter  Google Scholar 

  • Dimanov, A., G. Dresen, and R. Wirth, Creep behaviour of partially molten polycrystalline labradorite, Terra Nova, Abstract Supplement 1, p. 12, 1998.

    Google Scholar 

  • Drury, M.R., and J.D. Fitz Gerald, Grain boundary melt films in an experimentally deformed olivine-orthopyroxene rock: implications for melt distribution in the upper mantle rocks, Geophys. Res. Lett., 23, 701–704, 1996.

    Article  Google Scholar 

  • Dupas, C., Etude par microscopie électronique en transmission analytique d’olivines et spinelles déformés expérimentallement aux conditions (P-T) de la zone transitione du manteau, 146 pp., Thesis no 1280, l’Université de Rennes, 1994.

    Google Scholar 

  • Edgar, A.D., F.E. Lloyd, D.M. Forsyth and R.L. Barnett, Origin of glass in upper mantle xenoliths from quarternary volcanics of Gees, West Eifel, Germany, Contrib. Mineral. Petrol., 103, 277–286, 1989.

    Article  Google Scholar 

  • Egerton, R.F., Electron energy-loss spectroscopy in the electron microscope, pp. 301–312, Plenum Press New York, 1996.

    Google Scholar 

  • Ficke, B., Petrologische Untersuchungen an tertiären basaltischen bis phonolitischen Vulkaniten der Rhön, Tschermaks Mineral. Petrogr. Mitt., 7, 337–436, 1961.

    Article  Google Scholar 

  • Franke, W. and O. Oncken, Geodynamic evolution of the North-Central Variscides — a comic strip, in: The European geotraverse: Integrative studies, edited by R. Freeman, P. Giese, and St. Mueller, pp. 187–194, Results from the Fifth Study Centre, Rauischholzhausen (26 March–7 April 1990), European Science Foundation, Strasbourg, 1990.

    Google Scholar 

  • Franz, L., G.P. Brey and M. Okrusch, Reequilibration of ultramafic xenoliths from Namibia by metasomatic processes at the mantle boundary, J. Geology, 104, 599–615, 1996.

    Article  Google Scholar 

  • Franz, L., W. Seifert and W. Kramer, Thermal evolution of the mantle underneath the Mid-German Crystalline Rise: Evidence from mantle xenoliths from the Rhön area (Central Germany)., Mineral. Petrol., 61,1–25, 1997.

    Article  Google Scholar 

  • Franz, L., and Wirth R., Thin intergranular melt films and melt pockets in spinel peridotite xenoliths from the Rhön area (Germany): early stage of melt generation by grain boundary melting, Contrib. Mineral. Petrol., 129, 268–283, 1997.

    Article  Google Scholar 

  • Frey, A.F., and M. Prinz, Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis, Earth Planet. Sci. Lett., 38, 126–176, 1978.

    Article  Google Scholar 

  • Frey, A.F., and D.H. Green, The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites, Geochimica et Cosmochimica Acta, 38, 1023–1059, 1974.

    Article  Google Scholar 

  • Gaetani, G.A., and T.L. Gove, The influence of water on melting of mantle peridotite, Contrib. Mineral. Petrol., 131, 323–346, 1998.

    Article  Google Scholar 

  • Gamble, A.J., and P.R. Kyle, The origins of glass and amphibole in spinel-wehrlite xenoliths from Foster Crater, McMurdo Volcanic Group, Antarctica, Journal of Petrology, 28, 755–779, 1987.

    Google Scholar 

  • Girod, M., J.M. Dautria and R. de Giovanni, A first insight into the constitution of the upper mantle under Hoggar Area (Southern Algeria): the lherzolite xenoliths in the alkali basalts, Contrib. Mineral. Petrol., 77, 66–73, 1981.

    Article  Google Scholar 

  • Gleiter, H., and B. Chalmers, High-angle grain boundaries, in: Progress in material science, 16, edited by B. Chalmers, J.W. Christian and T.B. Massalski, pp. 1–274, Pergamon Press, Oxford, 1972.

    Google Scholar 

  • Gleiter, H., Microstructure, in: Physical Metallurgy, edited by R.W. Cahn and P. Haasen, pp. 650–712, third, revised and enlarged edition, Elsevier, 1983.

    Google Scholar 

  • Goldstein, J.I,. and D.B.Williams, Quantitative X-ray analysis, in: Principles of analytical electron microscopy, edited by D.C. Joy, A.D. Romig and J.I. Goldstein, pp. 155–218, Plenum Press, New York, 1989.

    Google Scholar 

  • Green, D.H., Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions, Earth and Planetary Sci. Letters, 19, 37–53, 1973.

    Article  Google Scholar 

  • Hall, E.L., Compositional analysis of interfaces using X-ray spectroscopy, Microscopy Society of America Bulletin, 24, 359–370, 1994.

    Google Scholar 

  • Harte, B., Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths, J. Geology, 85, 279–288, 1977.

    Article  Google Scholar 

  • Harte, B., R.H. Hunter and P.D. Kinny, Melt geometry, movement and crystallisation, in relation to mantle dykes, veins and metasomatism, Phil. Trans. Royal. Soc. Lond. A, 342, 1–21, 1993.

    Article  Google Scholar 

  • Heinrich, W. and T. Besch, Thermal history of the upper mantle beneath a young back-arc extensional zone: ultramafic xenoliths from San Luis Potosi, Central Mexico, Contrib. Mineral. Petrol., 111, 126–142, 1992.

    Article  Google Scholar 

  • Hess, P.C., Thermodynamics of thin fluid films, J. Geophys. Res., 99, 7219–7229, 1994.

    Article  Google Scholar 

  • Herzberg, C., T. Gasparik, and H. Sawamoto, Origin of mantle peridotite: constraints from melting experiments to 16.5 Gpa, J. Geophys. Res., 95, 15,799–15,803, 1990.

    Article  Google Scholar 

  • Hirose, K., and T. Kawamota, Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas, Earth and Planetary Sci. Letters, 133, 463–473, 1995.

    Article  Google Scholar 

  • Hirose, K., and I. Kushiro, Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond, Earth and Planetary Sci. Letters, 114, 477–489, 1993.

    Article  Google Scholar 

  • Hirth, G., and D.L. Kohlstedt, Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981–2001, 1995.

    Article  Google Scholar 

  • Hobbs, L.W., and M.R. Pascucci, Radiolysis and defect structure in electron-irradiated alpha-quartz, Journal de Physique, 41, C6-237–C6-242, 1980.

    Google Scholar 

  • Inui, H., H. Mori, T. Sakata and H. Fujita, Electron irradiation induced crystalline -to-amorphous transition in quartz single crystals, Journal of Non-Crystalline Solids,, 116, 1–15, 1990.

    Article  Google Scholar 

  • Irving, A.J. and H.D. Green, Geochemistry and petrogenesis of the Newer Basalts of Victoria and South Australia, J. Geol. Soc. Aust., 23, 45, 1976.

    Article  Google Scholar 

  • Jin Zhen-Ming, H.W. Green, and Y. Zhou, Melt topology in partially molten mantle peridotite during ductile deformation, Nature, 372, 164–167, 1994.

    Article  Google Scholar 

  • Jones, A.P., J.V. Smith, and B.J. Dawson, Glasses in mantle xenoliths from Olmani, Tanzania, Journal of Geology, 91, 161–178, 1983.

    Google Scholar 

  • Jurewicz, S.R., and A.J.G. Jurewicz, Distribution of apparent angles on random section with emphasis on dihedral angle measurements, J. Geophys. Res., 91, 9277–9282, 1986.

    Article  Google Scholar 

  • Keblinski, P., S.R. Phillpot, D. Wolf, and H. Gleiter, On the thermodynamic stability of amorphous intergranular films in covalent materials, J. Amer. Ceramic. Soc., 80, 717–732, 1997.

    Article  Google Scholar 

  • Kleebe, H.-J., and G. Pezzotti, Anion segregation at Si3N4 interfaces studied by high-resolution transmission electron microscopy and internal friction measurements: a model system, in: Ceramic Microstructure: Control at the atomic level, edited by A.P. Tomsia and A. Glaeser, pp. 107 – 114, Plenum Press, NY & London, 1998.

    Google Scholar 

  • Klügel, A., Reactions between mantle xenoliths and host magma beneath La Palma (Canary Islands): constraints on magma ascent rates and crustal reservoirs, Contrib. Mineral. Petrol., 131,231–251, 1998.

    Google Scholar 

  • Kohlstedt, D.L., Structure, rheology and permeability of partially molten rocks at low melt fractions, in: Mantle Flow and Melt Generation at Mid-Ocean ridges, Geophys. Monogr. Ser., vol. 71, edited by J. Phipps Morgan, D.K. Blackman and J.M. Sinton, pp. 103–121, AGU, Washington D.C., 1992.

    Chapter  Google Scholar 

  • Kronberg, M.L., and F.H. Wilson, Secondary recrystallization in copper, Trans. AIME, 185, 501, 1949.

    Google Scholar 

  • Köhler, T., and G.P. Brey, Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications, Geoch. Cosmoch. Acta, 54, 2375–2388, 1990.

    Article  Google Scholar 

  • Lange, F., Liquid-phase sintering: are liquids squeezed out from between compressed particles?, J. Am. Ceram. Soc., 65, C-23, 1982.

    Article  Google Scholar 

  • Laporte, D., Wetting behaviour of partial melts during crustal anatexis: the distribution of hydrous silicic melt in polycrystalline aggregates of quartz, Contrib. Mineral. Petrol., 116, 486–499, 1994.

    Article  Google Scholar 

  • Laporte, D., C. Rapaille, and A. Provost, Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths, in: Granite: From segregation of melt to emplacement fabrics, edited by J..L. Bouchez, D,H,W, Hutton, and W.E. Stephens, pp. 31–54, Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  • Lippolt, H.W., K-Ar- Untersuchungen zum Alter des Rhön-Vulkanismus, Fortschr. Mineral., 56, Beiheft 1,85, 1978.

    Google Scholar 

  • Maaløe, S., and I. Printzlau, Natural partial melting of spinel lherzolite, J. Petrology, 20, 727–741, 1978.

    Google Scholar 

  • Martin, B., O.W. Flörke, E. Kainka, and R. Wirth R., Electron irradiation damage in quartz, SiO2, Phys. Chem. Minerals, 23, 409–417, 1996.

    Article  Google Scholar 

  • Mott, N.F., Slip at grain boundaries and grain growth in metals, Proc. Phys. Soc. London, 60, pp. 391, 1948.

    Article  Google Scholar 

  • Mysen, B.O., and A.L. Boettcher, Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide, J. Petrology, 16, 549–593, 1975.

    Google Scholar 

  • Odling, N.W.A., D.H. Green, and B. Harte, The determination of partial melt compositions of peridotitic systems by melt inclusion synthesis, Contrib. Mineral. Petrol., 129, 209–221, 1997.

    Article  Google Scholar 

  • Ohje, T., T. Hirano, A. Nakahira, and K. Niihara, Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites, J. Am. Ceram. Soc., 79, 33–45, 1996.

    Article  Google Scholar 

  • Ollier, C.D., and E.B. Joyce, Geo morphology of the Western District volcanic plains, lakes and coastline in: Regional guide to Victorian geology, edited by J. McAndrew and M. A. H. Marsden, pp. 224–239, University of Melbourn, Melbourn, 1973.

    Google Scholar 

  • Raterron, P., G.Y. Bussod, N. Doukhan, and J.C. Doukhan, Early partial melting in upper mantle: An A.E.M. study of a lherzolite experimentally annealed at hypersolidus conditions, Tectonophysics, 279,79–91, 1997.

    Article  Google Scholar 

  • Pezzotti, G., K. Ota, and H.J. Kleebe, Grain boundary relaxation in high-purity silicon nitride, J. Am. Ceram. Soc., 79, 2237–2246, 1996.

    Article  Google Scholar 

  • Schiano, P., R. Clocchiatti, N. Shimizu, R.C. Maury, K.P. Jochum, and A.W. Hofmann, Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 377, 595–600, 1995.

    Article  Google Scholar 

  • Sutton, A.P., and R.W. Balluffi, Interfaces in crystalline materials, Monographs on the physics and chemistry of materials 51, 852 pp., Clarendon Press, Oxford, 1995.

    Google Scholar 

  • Szabó, C., R.J. Bodnar, and A.V. Sobolev, Metasomatism associated with subduction related volatile-rich silicate melt in the upper mantle beneath the Nógrád-Gömör Volcanic Field, Northern Hungary/Southern Slovakia: Evidence from silicate melt inclusions, Eur. J. Mineral., 8, 881–899, 1996.

    Google Scholar 

  • Takahashi, E., Melting of dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91, 9367–9382, 1986.

    Article  Google Scholar 

  • Vaughan, P.J., D.L. Kohlstedt, and H.S. Waff, Distribution of the glass phase in hot-pressed, olivine-basalt aggregates: An electron microscopy study, Contrib. Mineral.Petrol., 81, 253–261, 1982.

    Article  Google Scholar 

  • Waff, H.S., and J.R. Bulau, Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions, J. Geophys. Res., 84, 6109–6114, 1979.

    Article  Google Scholar 

  • Waff, H.S., and U.H. Faul, Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts, J. Geophys. Res., 97, 9003–9014, 1992.

    Article  Google Scholar 

  • White, R.E., Ultramafic inclusions in basaltic rocks from Hawaii, Contrib. Mineral. Petrol., 12, 245–314, 1966.

    Article  Google Scholar 

  • Wiechert, U., D.A. Ionov, and K.H. Wedepohl, Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle, Contrib. Mineral. Petrol., 126, 345–364, 1997.

    Article  Google Scholar 

  • Wilkinson, D.S., Creep mechanisms in multiphase ceramic materials, J. Am Ceram. Soc., 81, 275–299, 1998.

    Article  Google Scholar 

  • Wirth, R., Thin amorphous films (1–2 nm) at olivine grain boundaries in mantle xenoliths from San Carlos, Arizona, Contrib. Mineral. Petrol., 124, 44–54, 1996.

    Article  Google Scholar 

  • Wulff-Pedersen, E., E.R. Neumann, and B.B.Jensen, The upper mantle under La Palma, Canary Islands: formation of Si-K-Na-rich melt and its importance as a metasomatic agent, Contrib. Mineral. Petrol., 125, 113–139, 1996.

    Article  Google Scholar 

  • Xu, Y., J.C.C. Mercier, C. Lin, L. Shi, M.A. Menzies, J.V. Ross, and Harte B., K-rich glass bearing wehrlite xenoliths from Yitong, North-eastern China: petrological and chemical evidence for mantle metasomatism, Contrib. Mineral Petrol., 125, 406–420, 1996.

    Article  Google Scholar 

  • Yaxley, G.M., V. Kamenetsky, D.H. Green, and T.J. Falloon, Glasses in mantle xenoliths from Western Victoria, Australia, and their relevance to mantle processes, Earth Planet. Sci. Lett., 148, 433–446, 1997.

    Article  Google Scholar 

  • Zinngrebe, E., and S.F. Foley, Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment, Contrib. Mineral. Petrol., 122, 79–96, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wirth, R., Franz, L. (2000). Thin Amorphous Intergranular Layers at Mineral Interfaces in Xenoliths: the Early Stage of Melting. In: Bagdassarov, N., Laporte, D., Thompson, A.B. (eds) Physics and Chemistry of Partially Molten Rocks. Petrology and Structural Geology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4016-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4016-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5774-5

  • Online ISBN: 978-94-011-4016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics