Skip to main content

Organism: A Meshwork of Selfless Selves

  • Chapter
Organism and the Origins of Self

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 129))

Abstract

Organism connotes a knotty dialectic: a living system makes itself into a entity distinct from its environment through a process that brings forth, through that very process, a world proper to the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewontin, R. (1982), The Dialectical Biologist, MIT Press, Cambridge.

    Google Scholar 

  2. Langton, C. (Ed.) (1989), Artificial Life, Addison-Wesley: Redwood City.

    Google Scholar 

  3. Maturana, H. and F. Varela (1973), De Máquinas y Seres Vivos: Una teoría de la organizatión biológica, Editorial Universitaria: Santiago de Chile.

    Google Scholar 

  4. Maturana, H. and F. Varela (1980), Autopoiesis and Cognition: The Realization of the Living, D. Reidel: Boston. [Boston Studies in the Philosophy of Science, vol. 42].

    Google Scholar 

  5. Varela, F., H. Maturana, and R. Uribe (1974), Autopoiesis: the organization of living system, its characterization and a model, BioSystems 5: 187–195.

    Article  CAS  Google Scholar 

  6. Fleischaker, G. (1988), Autopoiesis: System logic and the origin of life, Ph.D. Dissertation, Boston University, Boston, MA.

    Google Scholar 

  7. Margulis, L. (1981), Symbiosis in Cell Evolution, W. H. Freeman, San Francisco.

    Google Scholar 

  8. Margulis, L. and D. Sagan (1986), Origins of Sex, Yale Univ. Press, New Haven.

    Google Scholar 

  9. Gardner, M. (1971), On cellular automata, self-reproduction, the Garden of Eden, and the game “life”, Sci. Amer. 224: 112.

    Article  Google Scholar 

  10. Wolfram, S. (1986), Theory and Applications of Cellular Automata, World Scientific, Singapore.

    Google Scholar 

  11. Toffoli, T. (1987), Cellular Automata Machines, MIT Press, Cambridge.

    Google Scholar 

  12. Deamer, D. and G. Barchfeld (1982), Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions, J. Molec. Evol. 18: 203–206.

    Article  PubMed  CAS  Google Scholar 

  13. Lazcano, A. (1986), Prebiotic evolution and the origin of cells, Treballs Societat Catal. Biol. 39: 73–103.

    Google Scholar 

  14. Baeza, I. M. Ibñ nez, A. Lazcano, C. Santiago, C. Arguello, C. Wong, and J. Oró, Liposomes with polyribonucleotides as models of precellular systems, Origins of Life 17: 187–199.

    Google Scholar 

  15. Deamer, D.W. (1985), Role of amphillic compounds in the evolution of membrane structure on the early Earth, Origins of Life 17: 3–25.

    Google Scholar 

  16. Luisi, L. and F. Varela (1989), Self replicating micelles: A minimal version of a chemical autopoietic system, Origins of Life 19: 633–643.

    Article  CAS  Google Scholar 

  17. Varela, F. (1979), Principles of Biological Autonomy, North-Holland/ Elsevier, New York.

    Google Scholar 

  18. Varela, F. (1988), Structural coupling of simple cellular automata: On the origin of meaning. In: E. Secarz, F. Celada, N.A. Mitchinson, and T. Tada, The Semiotics of Cellular Communication in the Immune System, NATO ASI Series, Vol. H23, Springer-Verlag, New York, pp. 151–161.

    Google Scholar 

  19. Castoriadis, C. (1987), L’état du sujet aujourd’hui, Topique 38: 7–39.

    Google Scholar 

  20. Margulis, L. and K. Schwartz (1988), Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth, W.H. Freeman, New York.

    Google Scholar 

  21. Buss, L. (1987), The Evolution of Individuality, Princeton Univ. Press, Princeton.

    Google Scholar 

  22. Bonner, J.T. (1988), The Evolution of Complexity, Princeton Univ. Press, Princeton.

    Google Scholar 

  23. Varela, F., B. Dupire, and A. Coutinho, (1988), Cognitive networks: Immune, neural and otherwise. In: A. Perelson (Ed.), Theoretical Immunology, Vol. 2. (SFI Series on Complexity), Addison Wesley, New Jersey, pp. 359–375.

    Google Scholar 

  24. Vaz, N. and F. Varela (1978), Self and non-sense: An organism-centered approach to immunology, Medical Hypothesis 4: 231–267.

    Article  CAS  Google Scholar 

  25. Coutinho, A., L. Forni, D. Holmberg, F. Ivars, and N. Vaz (1984), From an antigen-centered, clonal perspective on immune responses to an organism-centered network perspective of autonomous activity in a self-referential immune system, Immunol. Revs. 79: 151–168.

    Article  CAS  Google Scholar 

  26. Lundqvist, I., A. Coutinho, F. Varela, and D. Holmberg (1989), Evidence for the functional dynamics in an antibody network, Proc. Natl. Acad. Sci. (USA) 86: 5074–5078.

    Article  Google Scholar 

  27. Varela, F.M. and A. Coutinho (1991), Second generation immune networks. Immunol. Today. In press.

    Google Scholar 

  28. Coutinho, A. (1989), Beyond clonal selection and network, Immunol. Revs. 110: 63–87.

    Article  CAS  Google Scholar 

  29. Varela, F., A. Andersson, G. Dietrich, A. Sundblad, D. Holmberg, M. Kazatchkine, and A. Coutinho, The population dynamics of natural antibodies in normal and autoimmune individuals, Proc. Natl. Acad. Sci. (U.S.A.), In Press.

    Google Scholar 

  30. Varela, F. and S. Frenk (1987), The organ of form: Towards a biological theory of shape, J. Soc. Biol. Struct. 10: 73–83.

    Article  Google Scholar 

  31. Carew, T. and C. Sahley (1983), Invertebrate learning and memory: from behavior to molecules, Ann. Rev. Neurosci. 9: 435–487.

    Article  Google Scholar 

  32. Zecevic, D., J. Wu, L. Cohen, J. London, H. Höpp, C. Falk (1989), Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex, J. Neurosci. 9: 3681–3689.

    PubMed  CAS  Google Scholar 

  33. John, E.R., Y Tang, A. Brill, A.B. Young, and K. Ono (1986), Double-labeled metabolic maps of memory, Science 233: 1167–1175.

    Article  PubMed  CAS  Google Scholar 

  34. Singer, W. (1977), Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system, Physiol. Rev. 57: 386–420.

    PubMed  CAS  Google Scholar 

  35. Steriade, M. and M. Deschenes (1985), The thalamus as a neuronal oscillator, Brain Res. Rev. 8: 1–63.

    Article  Google Scholar 

  36. Varela, F. and W. Singer (1987), Neuronal dynamics in the visual cortico-thalamic pathway revealed through binocular rivalry, Exp. Brain Res. 66: 10–20.

    Article  PubMed  CAS  Google Scholar 

  37. Horn, G. and R. Hill (1968), Modifications of receptive fields of cells in the visual cortex occurring spontaneously and associated with bodily tilt, Nature 221: 186–188.

    Article  Google Scholar 

  38. Fishman, M.C. and P. Michael (1973), Integration of auditory information in the cat’s visual cortex, Vision Research 13: 1415–1419.

    Article  PubMed  CAS  Google Scholar 

  39. Morell, F. (1972), Visual system’s view of acoustic space, Nature 238: 44–46.

    Article  Google Scholar 

  40. Allman, J., F. Meizen, and E. McGuiness (1985), Non-classical receptive field properties, Ann. Rev. Neuroscien. 8: 407–430.

    Article  CAS  Google Scholar 

  41. Abeles, M. (1984), Local Cortical Circuits, Springer Verlag, Berlin.

    Google Scholar 

  42. DeYoe, E. and D.C. Van Essen (1988), Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219–226.

    Article  PubMed  CAS  Google Scholar 

  43. Minsky, M. (1987), The Society of Mind, Simon and Schuster, New York.

    Google Scholar 

  44. Llinás, R. (1988), The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function, Science 242: 1654–1664.

    Article  PubMed  Google Scholar 

  45. Gevins, A., R. Schaffer, J. Doyle, B. Cutillo, R. Tannehill, and S. Bressler (1983), Shadows of thought: shifting lateralization of human brain electrical patterns during a brief visuo-motor task, Science 220: 97–99.

    Article  PubMed  CAS  Google Scholar 

  46. Varela, F., A. Toro, E. John, and E. Schwartz (1981), Perceptual framing and cortical alpha rhythms, Neuropsychologia 19: 675–686.

    Article  PubMed  CAS  Google Scholar 

  47. Goodwin, B. and P. Saunders (Eds.) (1989) Theoretical Biology: Epigenetic and Evolutionary Order from Complex Systems, Edinburgh University Press, Edinburgh.

    Google Scholar 

  48. Farmer, J., A. Lapedes, N. Packard, and B. Wendroff (Eds.) (1986), Evolution, Games and Learning, North-Holland, Amsterdam.

    Google Scholar 

  49. McClelland, J. and D. Rummelhart (1986), Parallel Distributed Processing: Studies on the Microstructure of Cognition, 3 vols., MIT Press, Cambridge.

    Google Scholar 

  50. Wolfram, S. (1984), Cellular automata as models for complexity, Nature 311: 419–424.

    Article  Google Scholar 

  51. Pasteels, J. and J. Deneubourg (1987), From Individual to Collective Behavior in Social Insects, Birkhäuser, Basel.

    Google Scholar 

  52. Wilson, E.O. (1971), The Insect Societies, Harvard Univ. Press, Cambridge.

    Google Scholar 

  53. Fresnau, D. and J. Lachaud (1985), La régulation sociale sociale: donnés préliminaires sur les facteurs individuels controlant l’organisation des taches chez Neoponera apicalis, Actes Coll. Insects Sociaux 2: 185–193.

    Google Scholar 

  54. Deneubourg, J., S. Aron, S. Goss, J. Pasteels, and G. Duerinck (1986), Random behavior, amplification processes and number of participants: how they contribute to the foraging properties of ants. In: Farmer et al. (Eds.), Evolution, Games and Learning, North-Holland, Amsterdam.

    Google Scholar 

  55. Newell, A. (1980), Physical symbol systems, Cognitive Scien. 4: 135–183.

    Article  Google Scholar 

  56. Plyshyn, Z. (1984), Computation and Cognition: Toward a Foundation for Cognitive Science, MIT Press, Cambridge.

    Google Scholar 

  57. Grossberg, S. (1984), Studies of Mind and Brain, D. Reidel, Boston. [Boston Studies in the Philosophy of Science, vol. 70].

    Google Scholar 

  58. Smolensky, P. (1988), On the proper treatment of connectionism, Beh. Brain Sci. 11: 1–74.

    Article  Google Scholar 

  59. Dennett, D. (1990a), Mother nature versus the walking encyclopedia: A western drama, in: Ramsey, S., D. Rummelhart, and S. Stich (Eds.), Philosophy and Connectionist Theory, (forthcoming).

    Google Scholar 

  60. Dennett, DJ (1987), The Intentional Stance, MIT Press, Cambridge.

    Google Scholar 

  61. Thompson, E., A. Palacios, and F. Varela (1991), Ways of coloring: Comparative color vision as a case study in cognitive science, Beh. Brain Sci. In press.

    Google Scholar 

  62. Fisher, S. (1990), In: G. Hattinger (Ed.), Virtuelle Welten, Linz.

    Google Scholar 

  63. Agree, Ph. (1988), The Dynamic Structures of Everyday Life, Report No. AI-TR 1085, MIT Artificial Intelligence Lab., Cambridge.

    Google Scholar 

  64. Brooks, R.A. (1986), Achieving artificial intelligence through building robots, A.I. Memo 899, MIT Artificial Intelligence Laboratory, May 1986.

    Google Scholar 

  65. Brooks, R.A. (1987), Intelligence without representation, MIT Artificial Intelligence Report, Cambridge, MA.

    Google Scholar 

  66. Dennett, D. (1990b), Review of Ch. Langten (Ed.), Artificial Life, Biology Philos. In press.

    Google Scholar 

  67. Humphreys, N. and D. Dennett (1989), Speaking for ourselves: An assessment of multiple personality disorder, Raritan 9: 68–98.

    Google Scholar 

  68. Dupuy, J.-R and F. Varela (1990), Understandings of Origins. In: Varela, F. and J.R Dupuy (Eds.), Understanding Origins: Contemporary ideas on the genesis of life, mind and society, Kluwer, Boston, In press.

    Google Scholar 

  69. Merleau-Ponty, M. (1952), Phenomenologie de la Perception, Gallimard, Paris.

    Google Scholar 

  70. Heidegger, M. (1983), Die Grundbegriffe der Metaphysik, Gesamtausgabe t.29/30, Klostermann, Frankfurt.

    Google Scholar 

  71. Varela, F., E. Thompson, and E. Rosch (1991), The Embodied Mind: Cognitive Science and Human Experience, MIT Press, Cambridge.

    Google Scholar 

  72. Wittgenstein, L. (1972), Philosophical Investigations, Basil Blackwell, Oxford.

    Google Scholar 

  73. Lewontin, R. (1983), The organism as the subject and object of evolution, Scientia 118: 63–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Varela, F.J. (1991). Organism: A Meshwork of Selfless Selves. In: Tauber, A.I. (eds) Organism and the Origins of Self. Boston Studies in the Philosophy of Science, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3406-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3406-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1185-0

  • Online ISBN: 978-94-011-3406-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics