Skip to main content

Rooting of the Sheeted Dike Complex in the Oman Ophiolite

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

The root zone of the sheeted dike complex representing a thin zone (hundred meters thick) of extreme thermal gradient (∼5°C/m) is regarded as a thermal boundary between the convective magma chamber system below, and the main convective hydrothermal circuit which closes above, at the base of this root zone. The root zone of the sheeted dike complex is located at the top of the high level foliated gabbro unit, where the foliation steepens, and where the first diabase dikes appears. It is a complex zone characterized by mutual intrusions of microgabbros dikes (that we call protodikes) with brownish microgranular contacts against the gabbro matrix. Upward, viscous flow in the protodikes and in the reheated enclosing gabbros generate a diffuse transition to the sheeted complex. Protodike margins stretched in the enclosing flowing doleritic gabbros form a complicated network which can be depicted thanks to microstructural analysis. Later diabase dikes cross-cut the section. These relationships are obscured by the hydrothermal circulation which has generated, in particular, isotropic amphibole gabbro veins. These veins tend to propagate horizontally; they may be interpreted as the downward closure of the main hydrothermal convective circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, C.R., 1975. The petrology of a portion of the Troodos plutonic complex, Cyprus. Ph.D., Univ. of Cambridge (unpubl.).

    Google Scholar 

  • Benn, K. and Allard, B, 1989. Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. J. Petrology, 30: 925–946.

    Article  Google Scholar 

  • Beurrier, M., 1987. Géologie de la nappe ophiolitique de Samail dans les parties orientale et centrale de l’Oman. Thèse Doc. Etat, Paris 6, 406 p.

    Google Scholar 

  • Browning, P., 1982. The petrology, geochemistry and structure of the plutonic rocks of the Oman ophiolite. Ph.D. The Open University, 404 p.

    Google Scholar 

  • Delaney, J.R., Mogk, D.W. and Maul, M.J., 1987. Quartz-cemented breccias from the Mid-Atlantic Ridge: samples of a high salinity hydrothermal upflow zone. J. Geophys. Res., 92: 9175–9192.

    Article  Google Scholar 

  • Dewey, J.F. and Kidd, W.S.F., 1977. Geometry of plate accretion. Geol. Soc. Amer. Bull., 88: 960–968.

    Article  Google Scholar 

  • Gerlach D.C., Ave Lallemant, H.G. and Leeman, W.P., 1981. An island arc origin for the Canyon Mountain Ophiolite Complex, Eastern Oregon, U.S.A. Earth Planet. Sci. Lett., 53: 255–265.

    Article  Google Scholar 

  • Gregory, R.T. and Taylor, H.P., 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ180 buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res., 86: 2737–2755.

    Article  Google Scholar 

  • Harper, G.D., 1984. The Josephine ophiolite, northwestern California. Geol. Soc. Am. Bull.. 95: 1009–1026.

    Article  Google Scholar 

  • Hopson, C.A., Coleman, R.G., Gregory, R.T., Pallister, J.S. and Bailey. E.H., 1981. Geologic section through the Samail ophiolite and associated rocks along a Muscat-Ibra transect. J. Geophys. Res., 86: 2527–2544.

    Article  Google Scholar 

  • Juteau, T., Ernewein, E., Reuber, I., Whitechurch H. and Dahl. R., 1988. Duality of magma-tism in the plutonic sequence of the Sumail nappe. Tectonophysics, 151: 107–135.

    Article  Google Scholar 

  • Kelly, D.S. and Delaney, J.R., 1987. Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700°C. Earth Planet. Sci. Lett., 83: 53–66.

    Article  Google Scholar 

  • Lippard, S.J., Shelton, A.W. and Gass, L.G., 1986. The ophiolite of Northern Oman. Geol.Soc. London Mem., 11,178 p.

    Google Scholar 

  • Mysen, B.O. and Boettcher, A.L., 1974. Melting of a hydrous mantle. I: Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water. carbon dioxide, and hydrogen. J. Petrol., 16: 520–548.

    Google Scholar 

  • Nehlig, P., 1989. Etude d’un système hydrothermal océanique fossile: [ophiolite de Semail (Oman). Thèse Doc. Univ. Brest, 308 p.

    Google Scholar 

  • Nehlig P. and Juteau, T., 1988. Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman). Tectonophysics, 151: 199–221.

    Article  Google Scholar 

  • Nicolas, A., 1989. Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer Acad. Publ., 367 p.

    Book  Google Scholar 

  • Nicolas, A., Reuber, I. and Benn, K., 1988a. A new magma chamber model based on structural studies in the Oman ophiolite. Tectonophysics. 151: 87–105.

    Article  Google Scholar 

  • Nicolas, A., Ceuleneer, G. and Boudier, F., 1988b. Mantle flow patterns and magma chambers at ocean ridges: evidence from Oman Ophiolite. Marine Geophys. Res.. 9: 293–310.

    Article  Google Scholar 

  • Pallister, J.S., 1981. Structure of the sheeted dike complex of the Samail ophiolite near Ibra. Oman. J. Geophys. Res., 86: 2661–2672.

    Article  Google Scholar 

  • Pallister, J.S. and Hopson, C.A., 1981. Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J. Geophys. Res., 86: 2593–2644.

    Article  Google Scholar 

  • Payne J.G. and Strong, D.F., 1979. Origin of Twillingate trondhjemite, North-Central Newfoundland: partial melting in the roots of an island arc. In: ‘Trondhjemites, dacites, and related rocks’, F. Barker ed., Elsevier, Amsterdam, 489–516.

    Google Scholar 

  • Pedersen, R.B., 1986. The nature and significance of magma chamber margins in ophiolites:examples from the Norwegian Caledonides. Earth Planet. Sci. Lett.. 77: 100–112.

    Article  Google Scholar 

  • Pedersen, R.B. and Malpas, J., 1985. The origin of oceanic plagiogranites from the Karmoy ophiolite, Western Norway. Contr. Mineral. Petrol., 88: 36–52.

    Article  Google Scholar 

  • Rosencrantz, E., 1983. The structure of sheeted dikes and associated rocks in North Arm Massif, Bay of Islands Ophiolite Complex, and the intrusive process at oceanic spreading centers. Canad. J. Earth. Sci., 20: 787–801.

    Article  Google Scholar 

  • Rothery, D.A., 1983. The base of a sheeted dyke complex. Oman ophiolite: implications for magma chambers at oceanic spreading axes. J. Geol. Soc., London, 140: 287–296.

    Article  Google Scholar 

  • Smewing, J.D., 1981. Mixing characteristics and compositional differences in mantle-derived melts beneath spreading axes: evidence from cyclically layered rocks in the ophiolite of North Oman. J. Geophys. Res., 86: 2645–2660.

    Article  Google Scholar 

  • Stern, C. and Elthon, D., 1979. Vertical variations in the effects of hydrothermal metamorphism in Chilean ophiolites: their implications for ocean floor metamorphism. Tectonophysics. 55: 179–213.

    Article  Google Scholar 

  • Wyllie, P.J., 1980. The origin of kimberlite. J. Geophys. Res.. 85: 6902–6919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nicolas, A., Boudier, F. (1991). Rooting of the Sheeted Dike Complex in the Oman Ophiolite. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics