Skip to main content

Ridge Crest Magma Chambers: A Review of Results from Marine Seismic Experiments at the East Pacific Rise

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

Recent seismic studies along the northern East Pacific Rise have documented the existence of a thin, narrow crustal magma body that is significantly smaller than the magma chambers incorporated into many earlier ridge crest geological models. The predominately molten part of the chamber is only 1–2 km wide and less than a kilometer thick, although it can extend as a nearly continuous feature for distances of several kilometers to several tens of kilometers along the ridge crest. This thin, sill-like body of melt is surrounded by a much wider zone of anomalously low seismic velocities that is interpreted as ranging from a partially molten crystal mush to the solidified (but still hot) plutonic rocks of the lower oceanic crust. This magma-sill model of a mid-ocean ridge magma chamber has important implications for the petrological and geochemical variability of mid-ocean ridge basalts and the origin of the thick cumulate sections found in ophiolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brandeis, G. and C. Jaupart, 1986. On the interaction between convection and crystallization in cooling magma chambers, Earth. Planet. Sci. Lett., 86: 345–361.

    Article  Google Scholar 

  • Browning, P., 1984. Cryptic variation within the cumulate sequence of the Oman ophiolite: magma chamber depth and petrological implications. In: I.G. Gass, S.J. Lippard and A.W. Shelton (Ed.), Ophiolites and Oceanic Lithosphere, Geol. Soc. London Spec. Publ., 13: 71–82.

    Google Scholar 

  • Bryan, W.B. and J.G. Moore, 1977. Compositional variations of young basalts in the Mid-Atlantic Ridge rift valley near lat. 36°49’N, Geol. Soc. Am. Bull., 88: 556–570.

    Article  Google Scholar 

  • Burnett, M.S., Caress, D.W. and J.A. Orcutt, 1989. Tomographie image of the magma chamber at 12°50’N on the East Pacific Rise, Nature, 339: 206–208.

    Article  Google Scholar 

  • Cann, J.R., 1974. A model for oceanic crustal structure developed, Geophys. J.R. astron. Soc., 39: 169–187.

    Article  Google Scholar 

  • Caress, D., Burnett, M. and J. Orcutt, in press. Tomographic image of the axial low velocity zone at 12°50’N on the East Pacific Rise, J. Geophys. Res.

    Google Scholar 

  • Collier, J. and M. Sinha, 1990. Seismic images of a magma chamber beneath the Lau Basin back-arc spreading centre, Nature, 346: 646–648.

    Article  Google Scholar 

  • Detrick, R.S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J. and T. Brocher, 1987. Multichannel seismic imaging of a crustal magma chamber along the East Pacific Rise, Nature, 326: 35–41.

    Article  Google Scholar 

  • Dewey, J.F. and W.S.F. Kidd, 1977. Geometry of plate accretion, Geol. Soc. Soc. Am., 88: 960–9687.

    Article  Google Scholar 

  • Hale, L.D., Morton, C.J. and N.H. Sleep, 1982. Reinterpretation of seismic reflection data over the East Pacific Rise, J. Geophys. Res., 87: 7707–7717.

    Article  Google Scholar 

  • Harding, A.J., Orcutt, J., Kappus, M., Vera, E., Mutter, J., Buhl, P., Detrick, R. and T. Brocher, 1989. The structure of young oceanic crust at 13°N on the East Pacific Rise from Expanding Spread Profiles, J. Geophys. Res., 94: 12,163–12,196.

    Article  Google Scholar 

  • Herron, T.J., Ludwig, W.J., Stoffa, P.L., Kan, T.K., and P. Buhl, 1978. Structure of the East Pacific Rise from multichannel seismic reflection data, J. Geophys. Res., 83: 798–804.

    Article  Google Scholar 

  • Herron, T.J., Stoffa, P.L. and P. Buhl, 1980. Magma chamber and mantle reflections – East Pacific Rise, Geophys. Res. Lett., 7: 989–992.

    Article  Google Scholar 

  • Huppert, H.E. and R.S.J. Sparks, 1980. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma, Contrib. Mineral. Petrol., 75: 279–289.

    Article  Google Scholar 

  • Huppert, H.E. and J.S. Turner, 1981. A laboratory model of replenished magma chamber, Earth Planet. Sci. Lett., 54: 144–152.

    Article  Google Scholar 

  • Irvine, T.N., Keith, D.W. and S.G. Todd, 1983. The J-M platinum-palladium reef on the Stillwater complex, Montana: II. Origin by double-diffusive convective magma mixing and implications for the Bushveld complex, Bull. Soc. Econ. Geol., 78: 1287–1334.

    Article  Google Scholar 

  • Kent, G.M., Harding, A.J. and J.A. Orcutt, 1990. Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30’N, Nature, 344: 650–653.

    Article  Google Scholar 

  • Kim, I. and J.A. Orcutt, 1989. Effects of disrupted axial morphology on the amplitude strength of the crustal magma chamber reflection at the East Pacific Rise, EOS, (Trans. Am. Geophys. Union), 70: 1317.

    Google Scholar 

  • Klitgord, K.D. and J. Mammerickx, 1982. Northern East Pacific Rise: Magnetic anomaly and bathymetric framework, J. Geophys. Res., 87: 6725–6750.

    Article  Google Scholar 

  • Langmuir, C.H., 1989. Geochemical consequences of in situ crystallization, Nature, 340: 199–205.

    Article  Google Scholar 

  • Langmuir, C.H., Bender, J.F. and R. Batiza, 1986. Petrologic and tectonic segmentation of the East Pacific Rise, 5°30’-14°30’N, Nature, 322: 422–426.

    Article  Google Scholar 

  • Lewis, B.T.R., 1983. The process of formation of ocean crust, Science, 220: 151–157.

    Article  Google Scholar 

  • Lewis, B.T.R. and J.D. Garmany, 1982. Constraints on the structure of the East Pacific Rise from seismic refraction data, J. Geophys. Res., 87: 8,417–8,425.

    Article  Google Scholar 

  • Macdonald, K.C., 1989. Anatomy of the magma reservoir, Nature, 339: 178–179.

    Article  Google Scholar 

  • Macdonald, K.C., 1982. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Ann. Rev. Earth Planet. Sci., 10: 155–190.

    Article  Google Scholar 

  • Macdonald, K.C. and P.J. Fox, 1988. The axial summit graben and cross-sectional shape of the East Pacific Rise as indicators of axial magma chambers and recent volcanic eruptions, Earth Planet. Sci. Lett., 88: 119–131.

    Article  Google Scholar 

  • Madsen, J.A., Detrick, R.S., Mutter, J.C., Buhl, P. and J.C. Orcutt, 1990. A two-and three-dimensional analysis of gravity anomalies associated with the East Pacific Rise at 9°N and 13°N, J. Geophys. Res., 95: 4967–4987.

    Article  Google Scholar 

  • Manghnani, M.H., Sato, H. and C.S. Rai, 1986. Ultrasonic velocity and attenuation measurements on basalt melts to 1500°C: Role of composition and structure in the viscoelastic properties, J. Geophys. Res., 91: 9333–9342.

    Article  Google Scholar 

  • McBirney, A.R. and R.M. Noyes, 1979. Crystallization and layering of the Skaergaard intrusion, J. Petrol., 20: 487–554.

    Article  Google Scholar 

  • McClain, J.S., Orcutt, J.A. and M. Burnett, 1985. The East Pacific Rise in Cross-Section: A Seismic Model, J. Geophys. Res., 90: 8627–8640.

    Article  Google Scholar 

  • Morton, J.L. and N. Sleep, 1985. Seismic reflections from a Lau Basin magma chamber, in Scholl, D.W. and Vallier, T.L., eds., Geology and offshore resources of Pacific island arcs - Tonga region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, v. 2: Houston Texas, 441–453.

    Google Scholar 

  • Murase, T. and A. McBirney, 1973. Properties of Some Common Igneous Rocks and Their Melts at High Temperatures, Geol. Soc. Amer. Bull., 84: 3563–3592.

    Article  Google Scholar 

  • Mutter, J.C., Barth, G.A., Buhl, P., Detrick, R.S., Orcutt, J. and A. Harding, 1988. Magma distribution across ridge-axis discontinuities on the East Pacific Rise from multichannel seismic images, Nature, 336: 156–158.’

    Article  Google Scholar 

  • Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer, Dordrecht, 367 pp.

    Book  Google Scholar 

  • Nicolas, A., Reuber, I. and K. Benn, 1988. A new magma chamber model based on structural studies in the Oman ophiolite, Tectonophysics, 151: 87–105.

    Article  Google Scholar 

  • Orcutt, J.A., Kennett, B.L.N, Dorman, L.M and W. Prothero, 1975. A low velocity zone underlying a fast spreading ridge crest, Nature, 256: 475–476.

    Article  Google Scholar 

  • Pallister, J.S. and C.A. Hopson, 1981. Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering and a model of a spreading ridge magma chamber, J. Geophys. Res., 86: 2593–2644.

    Article  Google Scholar 

  • Rosendahl, B.R., Raitt, R.W., Dorman, L.M., Bibee, L.D., Hussong, D.M. and G.H. Sutton, 1976. Evolution of oceanic crust: 1. A physical model of the East Pacific Rise crest derived from seismic refraction data, J. Geophys. Res., 81: 5294–5304.

    Article  Google Scholar 

  • Sinton, J.M., Smaglik, S.M., and J.J. Mahoney, 1988. Along-axis magmatic variations at super-fast spreading: East Pacific Rise, 13–23°S, EOS (Trans. Am. Geophys. Union), 69: 1473.

    Google Scholar 

  • Sinton, J.M., Smaglik, S.M., Mahoney, J.J. and K.C. Macdonald, 1991. Magmatic processes at superfast spreading oceanic ridges: Glass compositional variations along the East Pacific Rise 13°-23°S, J. Geophys. Res., 96: 6133–6155.

    Article  Google Scholar 

  • Toomey, D.R., Purdy, G.M., Solomon, S.C. and W.S.D. Wilcock, 1990. The three-dimensional seismic velocity structure of the East Pacific Rise near latitude 9°30’N, Nature, 347: 639–645.

    Article  Google Scholar 

  • Vera, E.E., Buhl, P., Mutter, J.C., Harding, A.J., Orcutt, J.A. and R.S. Detrick, 1990. The structure of 0–0.2 My old oceanic crust at 9°N in the East Pacific Rise from expanded spread profiles, J. Geophys. Res., 95: 15,529–15,556.

    Article  Google Scholar 

  • Usselman, T.M. and D.S. Hodge, 1978. Thermal central of low pressure fractionation processes, J. Volcanol. geotherm. Res., 4: 265–281.

    Article  Google Scholar 

  • Wilson, D.S., Clague, D.A., Sleep, N.H. and J. Morton, 1988. A model for narrow, steady state magma chambers on fast spreading ridges, J. Geophys. Res., 93: 11,974–11,984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Detrick, R.S. (1991). Ridge Crest Magma Chambers: A Review of Results from Marine Seismic Experiments at the East Pacific Rise. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics