Skip to main content

Methods for microbial autecology in the soil rhizosphere

  • Chapter
The Rhizosphere and Plant Growth

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 14))

Abstract

Developments in biotechnology have become a force to alter agriculture, and now place sharp focus on the biology of the rhizosphere as the site where modified plants and modified microorganisms will interact. Rhizosphere research, traditionally general and qualitative for the most part, must now address rhizosphere events in autecological terms to examine the specific microorganism in its interactions with its microenvironment and with other specific microbes therein. Extreme complexities of the rhizosphere call for innovative methodology. Molecular probes appear to offer the best approach to deal with the rhizosphere microhabitat with adequate specificity and sensitivity. Immunofluorescence, the first method to apply a molecular probe, has been used for autecological study of complex natural environments, including rhizospheres, for more than twenty years. Further developments in immunofluorescence, and its use together with refined complementary techniques will contribute increasingly to rhizosphere research. New molecular genetic probes are now emerging and, when successfully developed for application to soil systems, will provide a new generation of methodologies for autecological investigations of the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bashan Y and Levanony H 1985 An improved selection technique and medium for the isolation and enumeration of Azospirillum brasilense. Can. J. Microbiol. 31, 947–952.

    Article  CAS  Google Scholar 

  • Bashan Y and Levanony H 1987 Horizontal and vertical movement of Azospillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J. Gen. Microbiol. 133, 3473–3480.

    Google Scholar 

  • Bashan Y, Levanony H and Ziv-Vecht O 1987 The fate of field-inoculated Azospirillum brasilense Cd in wheat rhizosphere during the growing season. Can. J. Microbiol. 33, 1074–1079.

    Article  Google Scholar 

  • Belser L W and Schmidt E L 1978 Serological diversity within an ammonia-oxidizing population. Appl. Environ. Microbiol. 36, 589–593.

    PubMed  CAS  Google Scholar 

  • Bohlool B B and Schmidt E L 1980 The immunofluorescence approach in microbial ecology. Adv. Microb. Ecol. 4, 203–241.

    Article  Google Scholar 

  • Bohlool B B and Schmidt E L 1968 Nonspecific staining: its control in immunofluorescence examination of soil. Science 162, 1012–1014.

    Article  PubMed  CAS  Google Scholar 

  • Boivin R, Chalifour F P and Dion P 1988 Construction of a Tn5 derivative encoding bioluminescence and its introduction in Pseudomonas,Agrobacterium and Rhizobium. Mol. Gen. Genet. 213, 50–55.

    Article  PubMed  CAS  Google Scholar 

  • Campbell R and Rovira A D 1973 The study of the rhizosphere by scanning electron microscopy. Soil Biol. Bio-chem. 5, 747–752.

    Article  Google Scholar 

  • Compeau G, Al-Achi B, Platsouka E and Levy S B 1988 Survival of rifampicin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl. Environ. Microbiol. 54, 2432–2438.

    PubMed  CAS  Google Scholar 

  • Drahos D, Hemming B and McPherson S 1986 Tracking recombinant organisms in the environment: beta-galac-tosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Biotechnology 4, 439–444.

    Article  CAS  Google Scholar 

  • Fliermans C B and Schmidt E L 1975 Autoradiography and immunoflurescence combined for autecological study of single cell activity with Nitrobacter as a model system. Appl. Microbiol. 30, 676–684.

    PubMed  CAS  Google Scholar 

  • Fliermans C B, Soracco R J and Pope D H 1981 Measurement of Legionella pneumophila activity in situ. Current Microbiol. 6, 89–94.

    Article  Google Scholar 

  • Ford S and Olson B H 1988 Methods for detecting genetically engineered microorganism in the environment. Adv. Microbiol Ecol. 10, 45–79.

    Article  CAS  Google Scholar 

  • Foster R C 1981 The ultrastructure and histochemistry of the rhizosphere. New Phytol. 89, 263–273.

    Google Scholar 

  • Foster R C 1988 Microenvironments of soil microorganism. Biol. Fertil. Soil. 6, 189–203.

    Google Scholar 

  • Foster R C, Rovira A D and Cock T W 1983 Ultrastructure of the root-soil interface. American Phytopathological Society. St. Paul, MN, 157 p.

    Google Scholar 

  • Gould W D, Hagedorn C, Bardinelli T R, and Zablotowicz R M 1985 New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl. Environ. Microbiol. 49, 28–32.

    PubMed  CAS  Google Scholar 

  • Graham J B and Istock C A 1979 Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture. Science 204, 637–638.

    Article  PubMed  CAS  Google Scholar 

  • Hockenhull J 1979 In situ detection of Erwinia amylovora antigen in symptomless petiole and stem tissue by means of the fluorescent antibody technique. Kgl. Vet. Landohojsk. Arsskr. 1979, 1–14.

    Google Scholar 

  • Holben W E, Jansson J K, Chelm B K and Tiedje J M 1988 DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol 54, 703–711.

    PubMed  CAS  Google Scholar 

  • Jenny H and Grossenbacher K A 1963 Root-soil boundary zones as seen in the electron microscope. Soil Sci. Soc. Am. Proc. 27, 273–277.

    Article  Google Scholar 

  • Kosslak R M and Bohlool B B 1984 Suppression of nodule development on one side of a splitroot system of soybeans caused by prior inoculation of the other side. Plant Physiol. 75, 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Levanony H, Bashan Y and Kahana Z E 1987 Enzyme-linked immunosorbenty assay for specific identification and enumeration of Azospirillum brasilense Cd in cereal roots. Appl. Environ. Microbiol. 53, 358–364.

    PubMed  CAS  Google Scholar 

  • Moawad H, Ellis W R and Schmidt E L 1984 Rhizosphere response as a factor in competition among three serog-roups of indigenous Rhizobium japonicum for nodulation of field-grown soybeans. Appl. Environ. Microbiol. 47, 607–612.

    PubMed  CAS  Google Scholar 

  • Muldrow L L, Tyndall R L and Fliermans C B 1982 Application of flow cytometry to studies of pathogenic free-living amoebae. Appl. Environ. Microbiol. 44, 1258–1269.

    PubMed  CAS  Google Scholar 

  • Old K M and Nicolson T H 1975 Electron microscopical studies of the microflora of roots of sand dune grasses. New Phytol. 74, 51–58.

    Article  Google Scholar 

  • Rennie R J, Reyes V G and Schmidt E L 1977 Immunofluorescence detection of the effects of wheat and soybean roots on Nitrobacter in soil. Soil Sci. 124, 10–15.

    Article  Google Scholar 

  • Reyes V G and Schmidt E L 1981 Populations of Rhizobium japonicum associated with surfaces of soil-grown roots. Plant and Soil 61, 71–80.

    Article  Google Scholar 

  • Robert R M and Schmidt E L 1985 Response of three indigenous serogroups of Rhizobium japonicum to the rhizosphere of pre-emergent seedlings of soybean. Soil Biol. Biochem. 17, 579–580.

    Article  Google Scholar 

  • Rovira A D and Campbell R 1974 Scanning electron microscopy of microorganism on the roots of wheat. Microbiol. Ecol. 1, 15–23.

    Article  Google Scholar 

  • Schmidt E L and Bankole R O 1962 Detection of Aspergillus flavus in soil by immunofluorescent staining. Science 136, 776–777.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E L, Zidwick M J and Abebe H M 1986 Brady-rhizobium japnicum serocluster 123 and diversity among member isolates. Appl. Environ. Microbiol. 51, 1212–1215.

    PubMed  CAS  Google Scholar 

  • Singleton P W 1983 A split-root growth system for evaluating the effect of salinity on components of the soybean Rhizobium japonicum symbiosis. Crop Sci. 23, 259–262.

    Article  CAS  Google Scholar 

  • Singleton P W and Bohlool B B 1984 Effect of salinity on nodule formation by soybean. Plant Physiol. 74, 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Van Elzas J D, Dijkstra A F, Govaert J M and Van Veen J A 1986 Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol. Ecol. 38, 151–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmidt, E.L. (1991). Methods for microbial autecology in the soil rhizosphere. In: Keister, D.L., Cregan, P.B. (eds) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3336-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3336-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5473-7

  • Online ISBN: 978-94-011-3336-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics