Skip to main content

Rotation of Solar System Bodies

  • Chapter
Highlights of Astronomy

Part of the book series: International Astronomical Union ((IAUH,volume 9))

  • 52 Accesses

Abstract

Solar System bodies are different. They have different sizes, from large planets to small asteroids, and shapes. They have different structure, from solid body to solid body with fluid atmosphere or core, to gaseous bodies, but all of them rotate. The Solar System is a big laboratory for studying rotation of solid and fluid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Theory of solid rotation

  • Boigey, F., 1972: Une théorie des perturbations en variables angles-actions.Application au mouvement d’un solide autour d’un point fixe. Précession-nutation, Journal de Mécanique 11, 521–543.

    Google Scholar 

  • Bois, E., 1986: First-Order Theory of Satellite Attitude Motion-Application to HIPPARCOS, Celest. Mech. 39, 309–327.

    Google Scholar 

  • Bois, E., 1988: Second-Order Theory of the Rotation of an Artificial Satellite, Celest. Mech. 42, 141–168.

    Google Scholar 

  • Bois, E., 1992: On the Rotation Theory of Solid Celestial Bodies, submitted to Astron. Astrophys.

    Google Scholar 

  • Bois, E., Oberti, P., Froeschle, C, 1992: Gravitational Model of Comet Nucleus Rotation, submitted to Celest. Mech.

    Google Scholar 

  • Bois, E., Wytrzyszczak, I., 1990: The Moon’s Physical Librations-Part II: Non-Rigid Moon and Direct Non-Gravitational Perturbations, Proceedings of the NATO Advanced Study Institute on: Predictability, Stability and Chaos in N-Body Dynamical Systems, held in Cortina d’Ampezzo, Italy, Aug. 1990, Edited by Archie E. Roy.

    Google Scholar 

  • Bois, E., Wytrzyszczak, I., Journet, A., 1991: Planetary and Figure-figure Effects on the Moon’s Rotational Motion, submitted to Celest. Mech.

    Google Scholar 

  • Eckhardt, D.H., 1981: Theory of the libration of the moon, The Moon and the Planets 25, 3–49.

    Google Scholar 

  • Goldstein, H., 1964: Mecanique classique, Presses Universitaires de France, p. 172.

    Google Scholar 

  • Gupta, S.C. and Narchal, M.L., 1972: A note on Euler’s angles, Amer. J. Physics, 40, 345–346.

    Google Scholar 

  • Moritz, H., 1980: Theories of Nutation and Polar Motion I, Report No. 309, Dept. of Geodetic Science and Surveying, The Ohio State University, p. 109.

    Google Scholar 

Mars

  • Balmino, G., Moynot, B, and Vales N. 1982: Gravity Field Model of Mars in Spherical Harmonics. J. Geophys. Res. 87, 9735–9746

    Google Scholar 

  • Bills, B.G., and Ferrari, A.J. 1978: Mars Topography Harmonics and Geophysical Implications. J. Geophys. Res. 83, 3497–3508

    Google Scholar 

  • Bill, B.G. 1989: The Moments of Inertia of Mars. Geophys. Res. Letters, 16, 385–388.

    Google Scholar 

  • Binder, B.G., and Davis, D.R. 1973: Phys. Earth Planet. Inter., 7, 477.

    Google Scholar 

  • Borderies, N., Balmino, G., Caster L., and Moynot, B. 1980: Study of Mars Dynamics from Lander Tracking Data Analysis. The Moon and the Planets, 22, 191–200.

    Google Scholar 

  • Borderies, N. 1980: La Rotation de Mars: Théorie analytique. Analyse d’observations de l’expérience Viking. Ph. D. Dissertation, Universite Paul Sabatier, Toulouse, France.

    Google Scholar 

  • Bretagnon, P. 1974: Termes à longues périodes dans le système solaire. Astron. Astrophys., 30, 141–154.

    Google Scholar 

  • Brouwer, D., and Van Woerkom, A.J.J. 1950: The Secular Variations of the Orbital Elements of the Principal Planets. Astron. Pap. Amer. Ephemeris Naut. Alm, 13, 81–107.

    Google Scholar 

  • Cazenave, A., and Balmino, G. 1981: Meteorological Effects of the Seasonal Variations of the Rotation of Mars. Geophys. Res. Letters, 8, 245–248

    Google Scholar 

  • Christensen, E.J. 1975: Martian Topography Derived from Occultation, Radar, Spectral, and Optical Measurements. J. Geophys. Res., 80, 2909–2913

    Google Scholar 

  • Christensen, E.J., and Balmino, G. 1979: Development and Analysis of a Twelfth Degree and Order Gravity Model for Mars. J. Geophys. Res., 84, 7934–7953.

    Google Scholar 

  • Colombo, G. 1976: On the Spin Rate and Latitude Variations of Mars. JPL Interoffice Memorandum, 391, 4–777.

    Google Scholar 

  • Davies, M.E. 1977: The Prime Meridian of Mars and the Longitudes of the Viking Landers. Sciences 197, 1277

    Google Scholar 

  • Davies, M.E. (1978). The Control Net of Mars: May 1977. J. Geophys. Res. 83, 2311–2312.

    Article  ADS  Google Scholar 

  • Davies, M.E., Katayama, F.Y. and Roth, J.A. 1978: Control Net of Mars: February 1978: The Rand Corporation, R-2309-NASA.

    Google Scholar 

  • Davies, M.E., and Katayama, F.Y. 1983: The 1982 Control Network of Mars, J. Geophys. Res., 88, 7503–7504.

    Google Scholar 

  • Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A., Tillman, J.E., Chamberlain, T.E., Cole, H.L., Dutton, R.G., Greene, G.C., Simon, W.E., and Mitchell, J.L. 1976: Mars Climatology from Viking 1 After 20 Sols, Science, 194, 78–81.

    Google Scholar 

  • Hilton, J.L. 1991: The Motion of Mars’ Pole: I. Rigid Body Precession and Nutation. II. The Effect of an Elastic Mantle and a Liquid Core. Ph. D. Dissertation, U.S. Naval Observatory, Washington.

    Google Scholar 

  • Hubbard, W.B; 1984: Planetary Interiors, Van Nostrand Reinhold Company.

    Google Scholar 

  • Kaula, W.M., Sleep, N.H. and Phillips R.J. 1989: More About the Moment of Inertia of Mars. Geophys. Res. Letters 16, 1333–1336

    Google Scholar 

  • Laskar, J. 1988: Secular Evolution of the Solar System over 10 Millions Years. Astron. Astrophys. 198, 341–362.

    Google Scholar 

  • Lyttleton, R.A., Cain, D.L. and Liu, A.S. 1979: Nutations of Mars. JPL Publication, 79–85.

    Google Scholar 

  • Lorell, J., Born, G.H., Christensen, E.J., Jordan, J.F., Laing, P.A., Martin, W.L., Sjogren, W.L., Shapiro, L.L., Reasenberg, R.D., and Slater, G.L. 1972: Mariner 9 Celestial Mechanics Experiment: Gravity Field and Pole Direction of Mars. Science, 175, 317–320.

    Google Scholar 

  • Mayo, A.P., Blackshear, W.T., Tolson, R.H., Michael Jr., W.H., G.M., Kelly, J.P., Brencke, and Komarek T.A. (1977): Lander Locations, Mars Physical Ephemeris, and Solar System Parameters: Determination From Viking Lander Tracking Data, J. Geophys. Res., 82, 4297–4303.

    Article  ADS  Google Scholar 

  • Michael, Jr. W.H., Tolson, R.H., Mayo, A.P., Blackshear, W.T., Kelly, G.M., Cain, D.L., Brenckle, J.P., Shapiro, I.I., and Reasenberg, R.D. 1976: Viking Lander Location and Spin Axis of Mars: Determination from Radio Tracking Data, Science, 193, 803.

    Google Scholar 

  • Michael, Jr. W.H., Mayo, A.P., Blackshear, W.T., Tolson, H.R., Kelly, G.M., J.P., Brenkle, Cain, D.L., Fjeldbo, G., Sweetnam, D.N., Goldstein, R.B., MacNeil, P.E., Reasenberg, R.D., Shapiro, I.I., T.I.S. Boak III, Grossim, M.D. and Tang, C.H. 1976: Mars Dynamics, Atmospheric and Surface Properties: Determination from Viking Tracking Data, Science, 194, 1337–1339.

    Google Scholar 

  • Michael, W.H. Jr. 1979: Viking Lander Tracking Contributions to Mars Mapping. The Moon and the Planets, 20, 149–152.

    Google Scholar 

  • Michaux, D.M. 1967: Handbook of the Physical Properties of the Planet Mars. NASA Spec. Pll., 3030, 31.

    Google Scholar 

  • Null, G.W. 1969: A Solution for the Mass and Dynamical Oblateness of Mars. Bulletin of the American Astronomical Society, 1, 356.

    Google Scholar 

  • Okal, E.A., and D.L. Anderson (1978). Theoretical Models for Mars and their Seismic Properties, Icarus, 33, 514–528.

    Article  ADS  Google Scholar 

  • Philip, J.R. 1979: Angular Momentum of Seasonally Condensing Atmospheres, with Special Reference to Mars, Geophys. Res. Letters, 6, 727–730.

    Google Scholar 

  • Pollack, J.B. 1981: Atmospheres of the Terrestrial Planets. The New Solar System, Sky Publishing Corporation and Cambridge University Press.

    Google Scholar 

  • Reasenberg, R.D. 1977: The Moment of Inertia and Isostasy of Mars, J. Geophys. Res., 82, 369–375.

    Google Scholar 

  • Reasenberg, R.D., and King R.W. 1979: The Rotation of Mars. J. Geophys. Res., 84, 6231–6240.

    Google Scholar 

  • Rubincam, D.P. 1990: Mars: Change in Axial Tilt Due to Climate? Science, 248, 720–721.

    Google Scholar 

  • Sinclair, A.T. 1972: The Motions of the Satellites of Mars. Mon. Not. Roy. Astron. Soc., 15, 249–274.

    Google Scholar 

  • Struve, H. 1898: Mem. Acad. Imp. Sci. St Petersbourg, ser. VIII3, 66.

    Google Scholar 

  • De Vaucouleurs, G. 1964: The Physical Ephemeris of Mars, Icarus, 3, 236–247.

    Google Scholar 

  • Ward, W.R. 1973: Large Scale Variations in the Obliquity of Mars, Science, 181, 260–262.

    Google Scholar 

  • Ward, W.R. 1974a: Climatic Variations on Mars. 1. Astronomical Theory of Insolation, J. Geophys. Res., 79, 3375–3386.

    Google Scholar 

  • Ward, W.R. 1974b: Climatic Variations on Mars. 2. Evolution of Carbon Dioxide Atmosphere and Polar Caps. J. Geophys. Res., 79, 3387–3395.

    Google Scholar 

  • Ward, W.R. 1979a: Present Obliquity Oscillations of Mars: Fourth-Order Accuracy in Orbital e and I, J. Geophys. Res., 84, 237–241.

    Google Scholar 

  • Ward, W.R. 1979b: Past Obliquity Oscillations of Mars: The Role of the Tharsis Uplift. J. Geophys. Res., 84, 243–259.

    Google Scholar 

  • Ward, W.R. 1991: Resonant Obliquity of Mars? Icarus, accepted for publication.

    Google Scholar 

  • Williams, J.G. 1977: Seasonal Variations in the Rotation of Mars. JPL Engineering Memorandum, 315–14.

    Google Scholar 

Earth

  • Benedict, E., and Wilson, C.A., 1990: Dynamic redistribution of oceanic mass and the excitation of polar motion, Trans. Amer. Geophys. U., 71, 481.

    Google Scholar 

  • Brosche, P., Seiler, U., Sundermann, J., and Wünsch J., 1989: Periodic changes in Earth’s rotation due to oceanic tides. Astron. Astrophys. 220, 318.

    Google Scholar 

  • Brosche, P. and Stindermann, J., (eds) 1990: Earth’s rotation from eons to days. Springer-Ferlag.

    Google Scholar 

  • Capitaine, N. and Caze, B., 1991: Deficiencies in the model for the celestial motion of the CEP, Proc. IAU Coll. 127, Hughes, J.A., Smith, C.A. and Kaplan, G.A. (eds). U.S. Naval Observatory, p. 222.

    Google Scholar 

  • Cazenave, A., (ed.), 1986: Earth rotation, solved and unsolved problems. ReideL

    Google Scholar 

  • Dehant, V., 1990: On the nutations of a more realistic earth model. Geophys. J. Int. 100, 477.

    Google Scholar 

  • Djurovic, D., and Paquet, P., 1989: A 120-day oscillation in the solar activity and geophysical phenomena. Astron. Astrophys. 218, 302.

    Google Scholar 

  • Eubanks, T.M., Steppe, J.A., Dickey, J.O., and Callahan, P.S., 1985: A spectral analysis of the Earth’s angular momentum budget. J. Geophys. Res. 90, 5385.

    Google Scholar 

  • Guinot, B., 1982: The Chandlerian nutation from 1900 to 1980. Geophys. J. Roy. Astr. Soc. 71, 295.

    Google Scholar 

  • Hefty, J. and Capitaine, N., 1990: The fortnightly and monthly zonal tides in the Earth’s rotation from 1962 to 1988. Geophys. J. Int., 103, 219.

    Google Scholar 

  • Herring, T., 1991: The ZMOA-1990 nutation series. Proc. IAU Coll. 127, Hughes, J.A., Smith, C.A.,and Kaplan, G.A. (eds), U.S. Naval Observatory, p.157.

    Google Scholar 

  • Hide, R., and Dickey, J.O., 1991: Earth’s variable rotation. Science, 53, 627.

    Google Scholar 

  • Kinoshita, H, and Souchay, J., 1990: The theory of the nutation for the rigid Earth model at the second order. Celest. Mech. 48, 187.

    Google Scholar 

  • Kuehne, J., and Wilson, C.R., 1991: Terrestrial water storage and polar motion. J. Geophys. Res., 96, 4337.

    Google Scholar 

  • Lambeck, K., 1980: The Earth’s variable rotation. Geophysical causes and consequences. Cambridge University Press.

    Google Scholar 

  • Le Mouël, J.L, Courtillot, V., and Jault, D., 1991: Successful prediction of changes in the Earth’s rotation rate. To appear in Nature.

    Google Scholar 

  • McCarthy, D.D., and Luzum, 1991: Observations of luni-solar and free core nutation. Proc. IAU Coll. 127. Hughes, J.A., Smith, C.A., and Kaplan, G.A., (eds), U.S. Naval Observatory, p. 303.

    Google Scholar 

  • Merriam, J.B., 1982: A comparison of recent theoretical results on the short-period terms in the length of day. Geophys. J. R. astr. Soc. 69, 837.

    Google Scholar 

  • Munk, W.H., and MacDonald, G.I.F., 1960: The rotation of the Earth. Cambridge University Press.

    Google Scholar 

  • Nam Y.S., and Dickman, S.R., 1990: Effects of dynamic long-period ocean tides on changes in the Earth’s rotation rate. J. Geophys Res. 95, 6751.

    Google Scholar 

  • Newhall, X.X., Williams, J.G., and Dickey, J.O., 1990: Tidal acceleration of the Moon, Earth’s rotation from eons to days, Brosche, P. and Sündermann, J. (eds), Springer-Verlag, p. 51.

    Google Scholar 

  • Rochester, M.G., 1984: Causes of fluctuations in the rotation of the Earth. Phil. Trans. R. Soc. Lond. A 313, 95.

    Google Scholar 

  • Smith, M.L., and Dahlen, F.A., 1981: Geophys. J. R. astr. Soc. 64, 223.

    Google Scholar 

  • Stephenson, F.R., and Morrison, L.V., 1984: Long-term changes in the rotation of the Earth: 700 B.C. to A.D 1980. Phil. Trans. R. Soc. Lond. A 313, 47.

    Google Scholar 

  • Vondrak, J. 1990: Atmospheric and groundwater excitation of polar motion in case of variable Chandler frequency. Bull. Astron. Inst. Czechosl. 41, 211.

    Google Scholar 

  • Wahr, J.M., 1979: The tidal motions of a rotating elliptical, elastic and oceanless Earth. Ph. Thesis, University of Colorado.

    Google Scholar 

Pluto

Venus

  • Dr M.E. Davies gave a talk on the rotation of Venus at the Joint Commission Meeting. Unfortunately, due to unexpected circumstances, he was not able to contribute to the proceedings of the meeting. The reader can refer to Peale (1989) for a survey of dynamics in the solar system, including Venus, and to Lago and Cazenave (1979) and Shen and Zhang (1988) for the dynamics of Venus’s rotation.

    Google Scholar 

  • Lago, B. and Cazenave, A., 1979: Possible dynamical evolution of the rotation of Venus since formation. The Moon and Planets, 21, 127.

    Google Scholar 

  • Peale, S.J., 1989: Some unsolved problems in evolutionary dynamics in the solar system. Cel. Mech. and Dynam. Astron., 46, 253.

    Google Scholar 

  • Shen, M., and Zhang, C.Z., 1988: Dynamical evolution of the rotation of Venus, Earth, Moon and Planets, 43, 275.

    Google Scholar 

Mercury

  • Antoniadi, E.M., 1934: La Planite Mercure et la Rotation des Satellites. Paris.

    Google Scholar 

  • Moore, P., In Vilas, F., Chapman, C.R., and Mattews, M.S., 1988: Mercury, Tucson, p.3–5.

    Google Scholar 

  • Peale, S.J., 1988: In Vilas, F., Chapman, C.R., and Mattews, M.S. (1988) Mercury, Tucson, p.461.

    Google Scholar 

Asteroids

  • Binzel, R.P., Farinella, P., Zappala, V. and Cellino, A. 1989: Asteroid rotation rates: Distributions and statistics. Asteroids II (R.P. Binzel, T. Gehrels, and M.S. Matthews, eds.), Tucson: U. Arizona Press, pp. 416–441.

    Google Scholar 

  • Ephemerides of Minor Planets (published annually) St. Petersburg: Institute of Theoretical Astronomy.

    Google Scholar 

  • Harris, A.W., 1979: Asteroid rotation rates II. A theory for the collisional evolution of rotation rates. Icarus 40, 145–153.

    Google Scholar 

  • Harris, A.W. and Lupishko, D.F. 1989: Photometric lightcurve observations and reduction techniques. Asteroids II (R.P. Binzel, T. Gehrels, and M.S. Matthews, eds.), Tucson: U. Arizona Press, pp. 39–53.

    Google Scholar 

  • Lissauer, J.J. and Kary, D.M. 1991: The origin of the systematic component of planetary rotation I: Planet on a circular orbit. Icarus (in press).

    Google Scholar 

  • Safronov, V.S., 1969: Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. Moscow: Nauka Press (in Russian, English trans: NASA TTF-677, 1972).

    Google Scholar 

Download references

Authors

Editor information

Jacqueline Bergeron (General Secretary of the Union)

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feissel, M. (1992). Rotation of Solar System Bodies. In: Bergeron, J. (eds) Highlights of Astronomy. International Astronomical Union, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2828-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2828-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1916-0

  • Online ISBN: 978-94-011-2828-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics