Skip to main content

Construction of Optimal Hankel Approximations in the Guise of Stochastic Processes

  • Chapter
Probability Theory and Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 80))

  • 320 Accesses

Abstract

In this paper we consider the problem of approximating a given rational function, where A is a stable (in discrete time sense) matrix. We would like to approximate K(z) with another rational function of the same type, where F is again a stable matrix, but under the restriction that G(z) has fixed number of poles inside the unit circle. Since using the results of Glover [11] we can always find another rational function, where exists and stable, in such a way that is an all-pass transfer function, i.e. and Φ (z) is unitary on the unit circle, so in this paper we examine the approximations of type K(z) — σ Φ(z).

1

This paper was partly written while the author was visiting the Statistics and Applied Probability Program, University of California, Santa Barbara.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AдamяH B.M., Apob д.3., KpeЙH M.Г., AHaЛИTИЧecKИe cBOЙCTBa Пap IIIMИ,дTa ГaHKeЛeBa oпepaTopa и oбoбщeHHaя 3aдaчa IIIypa-TaKarИ, Mam.cбop., 86 (1971), 1, 34–75.

    Google Scholar 

  2. Ball J.A. and Helton J.W., Factorization results related to shift operator in an indefinite metric, Integral Equations and Operator Theory, 5 (1982), 632–658.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball J.A., Invariant subspace representations, unitary interpolants and factorization Indices, OT12, Birkhäuser, Basel, 1984.

    Google Scholar 

  4. Ball J.A. and Helton J.W., Hankel norm approximation of a rational matrix function in terms of its realization, Modeling, Identification and Robust Control, G.I. Byrnes and A. Lindquist eds., North-Holland, Amsterdam, 1986.

    Google Scholar 

  5. Ball J.A and Ran A.C.M., Left versus right canonical Wiener-Hopf factorization, in Operator Theory: Advances and Applications, Vol.21, Birkhäuser, Basel, 1986.

    Google Scholar 

  6. Ball J.A. and Ran A.C.M., Optimal Hankel norm model reduction and Wiener-Hopf factorization I: The canonical case, SIAM J. Control and Optimiz., 25 (1987), 2, 362-382.

    Article  MathSciNet  Google Scholar 

  7. Bart H., Gohberg I. and Kaashoek M.A., Minimal Factorization of Matrix and Operator Functions, OT1, Birkhäuser, Basel, 1981.

    Google Scholar 

  8. Bart H., Gohberg I., Kaashoek M.A. and van Dooren P., Factorization of transfer functions, SIAM J. Control and Optimiz., 18 (1980), 675–696.

    Article  MATH  Google Scholar 

  9. Clancey K. and Gohberg I., Factorization of Matrix Functions and Singular Integral Operators, OT3, Birkhäuser, Basel, 1981.

    MATH  Google Scholar 

  10. Dym H. and Gohberg I., Unitary interpolants, factorization indices and indefinite Hankel block matrices, J. Func.Anal., 54 (1983), 229–289.

    Article  MathSciNet  MATH  Google Scholar 

  11. Glover K., All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bound, Internat. J. Control, 39 (1984), 1115–1193.

    Article  MathSciNet  MATH  Google Scholar 

  12. Green M. and Anderson B.D.O., The approximation of power spectra by phase matching, Proc. of 25th Conf. on Decision and Control, Athens, Greece, 1986, 1085–1090.

    Google Scholar 

  13. Green M. and Anderson B.D.O., Factorization of all-pass matrix functions, International J. Control, 45 (1987), 215–235.

    Article  MathSciNet  Google Scholar 

  14. Green M. and Anderson B.D.O., State-space formulae for the factorization of all-pass matrix functions, International J. Control, 45 (1987), 1575–1602.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jonkheere E.A. and Helton J.W., Power spectrum reduction by optimal Hankel-norm approximation of the phase of the outer spectral factor, IEEE Trans. Automat. Control, 12 (1985).

    Google Scholar 

  16. Kung S.-Y. and Lin D.W., A state space formulation for optimal Hankelnorm approximations, IEEE Trans. Automat. Control, 26 (1981), 942–946.

    Article  MathSciNet  Google Scholar 

  17. Opdonacker P. and Jonckheere E.A., A state space approach to approximation by phase matching, MTNS’85, Stockholm, Sweden, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Michaletzky, G. (1992). Construction of Optimal Hankel Approximations in the Guise of Stochastic Processes. In: Galambos, J., Kátai, I. (eds) Probability Theory and Applications. Mathematics and Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2817-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2817-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5252-8

  • Online ISBN: 978-94-011-2817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics