Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 220))

Abstract

This chapter is concerned, not with the controversial topic of the adhesion component of friction (covered later in this book), but with how surface forces may influence a wide range of friction processes. This influence is either direct, or as a result of changes in the real area of contact.

First it is necessary to clarify some confusing terminology associated with the word “adhesion”, and to list current techniques used to measure surface forces. The chapter then describes the analysis of the elastic contact between a sphere and a flat, as a first step in understanding the adhesion of solids. Useful approximations are given by the “fracture mechanics” or “energy balance” model described by Sperling and independently by Johnson, Kendall and Roberts (JKRS), and the “deformed profile” model due to Derjaguin, Muller and Toporov (DMT). The JKRS approximation assumes a value of the work of adhesion or Dupre adhesion energy. It takes into account the additional deformation near the contact periphery resulting from surface forces, over and above the Hertzian deformation that would be given by the external load alone, and is valid in cases of strong adhesion, large radius and low elastic modulus. In the opposite situation, the DMT approximation applies: an arbitrary deformed profile (e.g. Hertzian), and the appropriate intermolecular force law, are assumed, and the force of attraction outside the contact zone is obtained by integration.

The effective force of attraction between the surfaces (not the same as the pull-off force required to separate them) can give rise to plastic as well as elastic increases in contact area. A size effect operates here, in that for smaller radii of curvature, the force required to initiate plastic deformation decreases faster than the force of attraction: this is opposed by a compressive reaction which therefore will produce plastic deformation if the scale of the contact region is small enough. The conditions for this “adhesion-induced plastic deformation”, and for ductile or brittle failure of an adhesive contact, have been summarized in the form of maps.

There are two at first sight contradictory effects of roughness on adhesion. For two surfaces glued together, roughness increases the force needed to peel them apart. However, for two solids placed in contact, roughness reduces the pull-off force. The classical analysis of this effect, for elastic and plastic contact, is reviewed: recent theoretical and experimental work has described an additional phenomenon known as avalanching, in which enlarged asperity junctions are formed when adhesion energy is released. This leads to the topic of energy dissipation in static contact, the associated hysteresis involving mechanical, chemical, or bulk effects (plasticity, viscoelasticity). As will be evident from later chapters, corresponding processes are involved in sliding contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kendall, K. (1980) Contemp. Phys. 21, 277.

    Article  ADS  Google Scholar 

  2. Dowson, D., Taylor, C.M., Godet M. and Berthe, D. eds., ‘Friction and Traction’, Westbury House, Guildford 1981.

    Google Scholar 

  3. Spurr, R.T. ref. (2), 34.

    Google Scholar 

  4. Johnson, K.L. ref. (2), 3.

    Google Scholar 

  5. Israelachvili, J.N. (1985) ‘Intermolecular and surface forces’, Academic Press, London.

    Google Scholar 

  6. Israelachvili, J.N. and McGuiggan, P.M. (1990) J. Mater. Res. 5, 2223.

    Article  ADS  Google Scholar 

  7. Guo, Q., Ross J.D.J. and Pollock, H.M. (1989) in ‘New materials approaches to tribology: theory and applications’, (MRS Fall Meeting Symposium Proceedings 140), L.E. Pope et al. (eds.), Materials Research Society, Pittsburgh.

    Google Scholar 

  8. Muller, V.M., Yushchenko, V.S. and Derjaguin, B.C. (1980) J. Colloid Interface Sci. 77, 91.

    Article  Google Scholar 

  9. Derjaguin, B.V., Muller V.M. and Toporov, Y.P. (1975) J. Colloid Interface Sci. 53, 314.

    Article  Google Scholar 

  10. Bradley, R.S. (1932) Phil. Mag. 13, 853.

    MATH  Google Scholar 

  11. Pashley, M.D. (1984) Colloids and Surfaces 12, 69.

    Article  Google Scholar 

  12. Tabor, D.J. (1977) J. Colloid Interface Sci. 58, 2.

    Article  Google Scholar 

  13. Sperling, G. (1964) Dissertation, Karlsruhe Technical High School.

    Google Scholar 

  14. Johnson, K.L., Kendall, K. and Roberts, A.D. (1971) Proc. R. Soc. A324, 301.

    ADS  Google Scholar 

  15. Maugis, D. in ‘Adhesive bonding’ (L-H. Lee, ed.), Plenum 1991, p.303; see also [11].

    Google Scholar 

  16. Pollock, H.M., Maugis D. and Barquins, M. (1978) App. Phys. Lett. 33, 798.

    Article  ADS  Google Scholar 

  17. Kendall, K., McN Alford N. and Birchall, J.D. (1987) Proc. R. Soc. A412, 269.

    ADS  Google Scholar 

  18. Tabor, D. (1975) in: ‘Surface Physics of Materials 2’ (J.M. Blakely, ed.), Academic Press.

    Google Scholar 

  19. Tabor, D. (1987) in ‘Tribology-50 years on’ (I Mech E., ed.), Mechanical Engineering Publications.

    Google Scholar 

  20. Kendall, K. (1986) Nature 319, 203.

    Article  ADS  Google Scholar 

  21. Briscoe, B.J. and Kremnitzer, S.L. (1979) J. Phys. D: Appl. Phys 12, 505.

    Article  ADS  Google Scholar 

  22. Georges, J-M. (ed.), ‘Microscopic aspects of adhesion and lubrication’, Elsevier (1982).

    Google Scholar 

  23. Barquins, M. and Maugis, D. (1982) J. Mécanique Theor. Appl. 1, 331.

    MATH  Google Scholar 

  24. Maugis, D. and Pollock, H.M. (1984) Acta Metall. 32, 1323.

    Article  Google Scholar 

  25. Roy Chowdhury, S.K., Hartley, N.E.W. Pollock H.M. and Wilkins, M.A. (1980) J. Phys. D: Appl. Phys. 13, 1761.

    Article  ADS  Google Scholar 

  26. Roy Chowdhury, S.K. and Pollock, H.M. (1981) Wear 66, 307.

    Article  Google Scholar 

  27. Fuller, K.N.G. and Tabor, D. (1975) Proc. R. Soc. A345, 327.

    ADS  Google Scholar 

  28. Johnson, K.L. in ‘Theoretical and applied mechanics’ (W.T. Koiter, ed.), North Holland 1977, p 133.

    Google Scholar 

  29. Chang, W.R., Etsion, I. and Bogy, D.B. (1988) Trans. ASME J Tribol. 110, 50.

    Article  Google Scholar 

  30. Ross, J.D.J., Pollock H.M. (1991) and Guo, Q. Powder Technol. 65, 21.

    Article  Google Scholar 

  31. Smith, J.R., Bozzolo, G., Banerjea A. and Ferrante, J. (1989) Phys. Rev. Lett. 63, 1269.

    Article  ADS  Google Scholar 

  32. Pollock H.M. and Roy Chowdhury S.K. in ref. 22, p 253.

    Google Scholar 

  33. Gimzewski, J.K. and Moller, R. (1987) Phys. Rev. B26, 1284.

    ADS  Google Scholar 

  34. Burnham, N.A., Dominguez, D.D., Mowery R.L., and Colton, R.J. (1990) Phys. Rev. Let. 64, 1931.

    Article  ADS  Google Scholar 

  35. Cohen, S.R., Neubauer G. and McClelland, G.M. (1990) J. Vac. Sci. Technol. A8, 3449.

    ADS  Google Scholar 

  36. Landman, U., Luedtke, W.D., Burnham N.A. and Colton, R.J. (1990) Science 248, 454.

    Article  ADS  Google Scholar 

  37. Pethica, J.B. and Sutton, A.P. (1988) J. Vac. Sci. Technol. A6, 2490.

    ADS  Google Scholar 

  38. Barenblatt, G.I. (1962) Adv. Appl. Mech. 7, 55.

    Article  MathSciNet  Google Scholar 

  39. Greenwood, J.A. and Johnson, K.L. (1981) Phil. Mag. 43, 697.

    Article  Google Scholar 

  40. Maugis, D. and Barquins, M. (1978) J. Phys. D 11, 1989.

    Article  ADS  Google Scholar 

  41. Fuller, K.N.G. and Roberts, A.D. (1981) J. Phys. D: Appl. Phys. 14, 221.

    Article  ADS  Google Scholar 

  42. Maugis, D. in ref. 22, p. 221.

    Google Scholar 

  43. Chen, V.L., Helm, C.A. and Israelachvili, J.N., J. Phys. Chem. to be published.

    Google Scholar 

  44. Burnham, N.A., Colton, R. and Pollock, H.M. (1991) J. Vac. Sci. Technol. A9, 2548.

    ADS  Google Scholar 

  45. Burnham, N.A., Colton, R. and Pollock, H.M. (1992) Phys. Rev. Lett., to be published.

    Google Scholar 

  46. Thornton, C. (1992) J. Phys. D: Appl. Phys. 24, 1942.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pollock, H.M. (1992). Surface Forces and Adhesion. In: Singer, I.L., Pollock, H.M. (eds) Fundamentals of Friction: Macroscopic and Microscopic Processes. NATO ASI Series, vol 220. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2811-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2811-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5249-8

  • Online ISBN: 978-94-011-2811-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics