Skip to main content

Sensitivity of Discrete Systems

  • Chapter
Elements of Structural Optimization

Part of the book series: Solid Mechanics And Its Applications ((SMIA,volume 11))

Abstract

The first step in the analysis of a complex structure is spatial discretization of the continuum equations into a finite element, finite difference or a similar model. The analysis problem then requires the solution of algebraic equations (static response), algebraic eigenvalue problems (buckling or vibration) or ordinary differential equations (transient response). The sensitivity calculation is then equivalent to the mathematical problem of obtaining the derivatives of the solutions of those equations with respect to their coefficients. This is the main subject of the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., “Computing Forward-Difference Intervals for Numerical Optimization”, SIAM J. Sci. and Stat. Comp., Vol. 4, No. 2, pp. 310–321, June 1983.

    Article  MathSciNet  MATH  Google Scholar 

  2. Iott, J., Haftka, R.T., and Adelman, H.M., “Selecting Step Sizes in Sensitivity Analysis by Finite Differences,” NASA TM-86382, 1985.

    Google Scholar 

  3. Haftka, R.T., “Sensitivity Calculations for Iteratively Solved Problems,” International Journal for Numerical Methods in Engineering, Vol. 21, pp. 1535–1546, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  4. Haftka, R.T., “Second-Order Sensitivity Derivatives in structural Analysis”, AIAA Journal, Vol. 20, pp.1765–1766, 1982.

    Article  MATH  Google Scholar 

  5. Barthelemy, B., Chon, C.T., and Haftka, R.T., “Sensitivity Approximation of Static Structural Response”, paper presented at the First World Congress on Computational Mechanics, Austin Texas, Sept. 1986.

    Google Scholar 

  6. Barthelemy, B., and Haftka, R.T., “Accuracy Analysis of the Semi-analytical Method for Shape Sensitivity Calculations,” Mechanics of Structures and Machines, 18, 3, pp. 407–432, 1990.

    Article  Google Scholar 

  7. Barthelemy, B., Chon, C.T., and Haftka, R.T., “Accuracy Problems Associated with Semi-Analytical Derivatives of Static Response,” Finite Elements in Analysis and Design, 4, pp. 249–265, 1988.

    Article  MATH  Google Scholar 

  8. Haug, E.J., Choi, K.K., and Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, 1986.

    Google Scholar 

  9. Cardani, C. and Mantegazza, P., “Calculation of Eigenvalue and Eigenvector Derivatives for Algebraic Flutter and Divergence Eigenproblems,” AIAA Journal, Vol. 17, pp.408–412, 1979.

    Article  MATH  Google Scholar 

  10. Murthy, D.V., and Haftka, R.T., “Derivatives of Eigenvalues and Eigenvectors of General Complex Matrix”, International Journal for Numerical Methods in Engineering, 26, pp. 293–311,1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. Nelson, R.B., “Simplified Calculation of Eigenvector Derivatives,” AIAA Journal, Vol. 14, pp. 1201–1205,1976.

    Article  MATH  Google Scholar 

  12. Rogers, L.C., “Derivatives of Eigenvalues and Eigenvectors”, AIAA Journal, Vol. 8, No. 5, pp. 943–944, 1970.

    Article  Google Scholar 

  13. Wang, B.P., “Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics,” AIAA Journal, 29(6), pp. 1018–1020, 1991.

    Article  Google Scholar 

  14. Sutter, T.R., Camarda, C.J., Walsh, J.L., and Adelman, H.M., “Comparison of Several Methods for the Calculation of Vibration Mode Shape Derivatives”, AIAA Journal, 26 (12), pp. 1506–1511, 1988.

    Article  Google Scholar 

  15. Ojalvo, I.U., “Efficient Computation of Mode-Shape Derivatives for Large Dynamic Systems” AIAA Journal, 25, 10, pp. 1386–1390, 1987.

    Article  MATH  Google Scholar 

  16. Mills-Curran, W.C., “Calculation of Eigenvector Derivatives for Structures with Repeated Eigenvalues”, AIAA Journal, 26(7), pp. 867–871, 1988.

    Article  MATH  Google Scholar 

  17. Dailey, R.L., “Eigenvector Derivatives with Repeated Eigenvalues”, AIAA Journal, 27(4), pp. 486–491, 1989.

    Article  MathSciNet  Google Scholar 

  18. Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

    MATH  Google Scholar 

  19. Bindolino, G., and Mantegazza, P., “Aeroelastic Derivatives as a Sensitivity Analysis of Nonlinear Equations,” AIAA Journal, 25(8), pp. 1145–1146, 1987.

    Article  Google Scholar 

  20. Murthy, D.V., “Solution and Sensitivity of a Complex Transcendental Eigen-problem with Pairs of Real Eigenvalues,” Proceedings of the 12th Biennial ASME Conference on Mechanical Vibration and Noise (DE-Vol. 18-4), Montreal Canada, September 17–20, 1989, pp. 229–234 (in press Int. J. Num. Meth. Eng. 1991).

    Google Scholar 

  21. Kreisselmeier, G., and Steinhauser, R., “Systematic Control Design by Optimizing a Vector Performance Index”, Proceedings of IFAC Symposium on Computer Aided Design of Control Systems, Zurich, Switzerland, 1979, pp.113–117.

    Google Scholar 

  22. Barthelemy, J-F. M., and Riley, M. F., “Improved Multilevel Optimization Approach for the Design of Complex Engineering Systems”, AIAA Journal, 26(3), pp. 353–360, 1988.

    Article  Google Scholar 

  23. Kramer, M.A., Calo, J.M., and Rabitz, H., “An Improved Computational Method for Sensitivity Analysis: Green’s Function Method with AIM,” Appl. Math. Modeling, Vol. 5, pp.432–441, 1981.

    Article  MATH  Google Scholar 

  24. Sandridge, C.A. and Haftka, R.T., “Accuracy of Derivatives of Control Performance Using a Reduced Structural Model,” Paper presented at the AIAA Dynamics Specialists Meeting, Monterey California, April, 1987.

    Google Scholar 

  25. Tadikonda, S.S.K. and Baruh, H., “Gibbs Phenomenon in Structural Mechanics,” AIAA Journal, 29(9), pp. 1488–1497, 1991.

    Article  Google Scholar 

  26. Williams, D., “Dynamic Loads in Aeroplanes Under Given Impulsive Loads with Particular Reference to Landing and Gust Loads on a Large Flying Boat,” Great Britain Royal Aircraft Establishment Reports SME 3309 and 3316, 1945.

    Google Scholar 

  27. Greene, W.H., Computational Aspects of Sensitivity Calculations in Linear Transient Structural Analysis, Ph.D dissertation, Virginia Polytechnic Institute and State University, August 1989.

    Google Scholar 

  28. Greene, W.H., and Haftka, R.T., “Computational Aspects of Sensitivity Calculations in Transient Structural Analysis”, Computers and Structures, 32, pp. 433–443, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haftka, R.T., Gürdal, Z. (1992). Sensitivity of Discrete Systems. In: Elements of Structural Optimization. Solid Mechanics And Its Applications, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2550-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2550-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1505-6

  • Online ISBN: 978-94-011-2550-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics