Skip to main content

Part of the book series: Solid Mechanics And Its Applications ((SMIA,volume 11))

  • 1327 Accesses

Abstract

In this chapter we study mathematical programming techniques that are commonly used to extremize nonlinear functions of single and multiple (n) design variables subject to no constraints. Although most structural optimization problems involve constraints that bound the design space, study of the methods of unconstrained optimization is important for several reasons. First of all, if the design is at a stage where no constraints are active then the process of determining a search direction and travel distance for minimizing the objective function involves an unconstrained function minimization algorithm. Of course in such a case one has constantly to watch for constraint violations during the move in design space. Secondly, a constrained optimization problem can be cast as an unconstrained minimization problem even if the constraints are active. The penalty function and multiplier methods discussed in Chapter 5 are examples of such indirect methods that transform the constrained minimization problem into an equivalent unconstrained problem. Finally, unconstrained minimization strategies are becoming increasingly popular as techniques suitable for linear and nonlinear structural analysis problems (see Kamat and Hayduk[[1]])which involve solution of a system of linear or nonlinear equations. The solution of such systems may be posed as finding the minimum of the potential energy of the system or the minimum of the residuals of the equations in a least squared sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kamat, M.P. and Hayduk, R.J., “Recent Developments in Quasi-Newton Methods for Structural Analysis and Synthesis,” AIAA J., 20(5), 672–679, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  2. Avriel, M., Nonlinear Programming: Analysis and Methods. Prentice-Hall, Inc., 1976.

    Google Scholar 

  3. Powell, M.J.D., “An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives,” Computer J., 7, pp. 155–162, 1964.

    Article  MATH  Google Scholar 

  4. Kiefer, J., “Sequential Minmax Search for a Maximum,” Proceedings of the American Mathematical Society, 4, pp. 502–506, 1953.

    Article  MATH  MathSciNet  Google Scholar 

  5. Walsh, G.R., Methods of Optimization, John Wiley, New York, 1975.

    MATH  Google Scholar 

  6. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, 1983.

    Google Scholar 

  7. Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization, Academic Press, New York, p. 92, 1981.

    MATH  Google Scholar 

  8. Spendley, W., Hext, G. R., and Himsworth, F. R., “Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation,” Technometrics, 4(4), pp. 441–461, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  9. Neider, J. A. and Mead, R., “A Simplex Method for Function Minimization,” Computer J., 7, pp. 308–313, 1965.

    Google Scholar 

  10. Chen, D. H., Saleem, Z., and Grace, D. W., “A New Simplex Procedure for Function Minimization,” Int. J. of Modelling & Simulation, 6, 3, pp. 81–85, 1986.

    Google Scholar 

  11. Cauchy, A., “Methode Generale pour la Resolution des Systemes D’equations Simultanees,” Comp. Rend. l’Academie des Sciences Paris, 5, pp. 536–538, 1847.

    Google Scholar 

  12. Hestenes, M.R. and Stiefel, E., “Methods of Conjugate Gradients for Solving Linear Systems,” J. Res. Nat. Bureau Stand., 49, pp. 409–436, 1952.

    Article  MATH  MathSciNet  Google Scholar 

  13. Fletcher, R. and Reeves, C.M., “Function Minimization by Conjugate Gradients,” Computer J., 7, pp. 149–154, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  14. Gill, P.E. and Murray, W.,”Conjugate-Gradient Methods for Large Scale Nonlinear Optimization,” Technical Report 79-15; Systems Optimization Lab., Dept. of Operations Res., Stanford Univ., pp. 10–12, 1979.

    Google Scholar 

  15. Powell, M.J.D., “Restart Procedures for the Conjugate Gradient Method,” Math. Prog., 12, pp. 241–254, 1975.

    Article  Google Scholar 

  16. Polak, E., Computational Methods in Optimization: A Unified Approach, Academic Press, 1971.

    Google Scholar 

  17. Axelsson, O. and Munksgaard, N., “A Class of Preconditioned Conjugate Gradient Methods for the Solution of a Mixed Finite Element Discretization of the Biharmonic Operator,” Int. J. Num. Meth. Engng., 14, pp. 1001–1019, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  18. Johnson, O.G., Micchelli, C.A. and Paul, G., “Polynomial Preconditioners for Conjugate Gradient Calculations,” SIAM J. Num. Anal., 20(2), pp. 362–376, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  19. Broyden, C.G., “The Convergence of a Class of Double-Rank Minimization Algorithms 2. The New Algorithm,” J. Inst. Math. Appl., 6, pp. 222–231, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  20. Oren, S.S. and Luenberger, D., “Self-scaling Variable Metric Algorithms, Part I,” Manage. Sci., 20(5), pp. 845–862, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  21. Davidon, W.C., Variable Metric Method for Minimization. Atomic Energy Commission Research and Development Report, ANL-5990 (Rev.), November 1959.

    Google Scholar 

  22. Fletcher, R. and Powel M.J.D., “A Rapidly Convergent Descent Method for Minimization,” Comput., J., 6, pp. 163–168, 1963.

    MATH  MathSciNet  Google Scholar 

  23. Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer J., 13(3), pp. 317–322, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  24. Goldfarb, D., “A Fanmy of Variable-metric Methods Derived by Variational Means,” Math. Comput., 24, pp. 23–26, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  25. Shanno, D.F., “Conditioning of Quasi-Newton Methods for Function Minimization,” Math. Comput., 24, pp. 647–656, 1970.

    Article  MathSciNet  Google Scholar 

  26. Dennis, J.E., Jr. and More, J.J., “Quasi-Newton Methods, Motivation and Theory,” SIAM Rev., 19(1), pp. 46–89, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  27. Powell, M. J.D., “Some Global Convergence Properties of a Variable Metric Algorithm for Minimization Without Exact Line Searches,” In: Nonlinear Programming (R.W. Cottle and C.E. Lemke, eds.), American Mathematical Society, Providence, RI, pp. 53–72, 1976.

    Google Scholar 

  28. Shanno, D.F., “Conjugate Gradient Methods with Inexact Searches,” Math. Oper. Res., 3(2), pp. 244–256, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  29. Kamat, M.P., Watson, L.T. and Junkins, J.L., “A Robust Efficient Hybrid Method for Finding Multiple Equilibrium Solutions,” Proceedings of the Third Intl. Conf. on Numerical Methods in Engineering, Paris, France, pp. 799–807, March 1983.

    Google Scholar 

  30. Kwok, H.H., Kamat, M.P. and Watson, L.T., “Location of Stable and Unstable Equilibrium Configurations using a Model Trust Region, Quasi-Newton Method and Tunnelling,” Computers and Structures, 21(6), pp. 909–916, 1985.

    Article  MATH  Google Scholar 

  31. Matthies, H. and Strang, G., “The Solution of Nonlinear Finite Element Equations,” Int. J. Num. Meth. Enging., 14, pp. 1613–1626, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  32. Schubert, L.K., “Modification of a Quasi-Newton Method for Nonlinear Equations with a Sparse Jacobian,” Math. Comput., 24, pp. 27–30, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  33. Broyden, C.G., “A Class of Methods for Solving Nonlinear Simultaneous Equations,” Math. Comput., 19, pp. 577–593, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  34. Toint, Ph.L., “On Sparse and Symmetric Matrix Updating Subject to a Linear Equation,” Math. Comput., 31, pp. 954–961, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  35. Shanno, D.F., “On Variable-Metric Methods for Sparse Hessians,” Math. Comput., 34, pp. 499–514, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  36. Curtis, A.R., Powell, M.J.D. and Reid, J.K., “On the Estimation of Sparse Jacobian Matrices,” J. Inst. Math. Appl., 13, pp. 117–119, 1974.

    MATH  Google Scholar 

  37. Powell, M.J.D. and Toint, Ph.L., “On the Estimation of Sparse Hessian Matrices,” SIAM J. Num. Anal., 16(6), pp. 1060–1074, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  38. Kamat, M.P., Watson, L.T. and VandenBrink, D.J., “An Assessment of Quasi-Newton Sparse Update Techniques for Nonlinear Structural Analysis,” Comput. Meth. Appl. Mech. Enging., 26, pp. 363–375, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  39. Kamat, M.P. and VandenBrink, D.J., “A New Strategy for Stress Analysis Using the Finite Element Method,” Computers and Structures 16(5), pp. 651–656, 1983.

    Article  MATH  Google Scholar 

  40. Gill, P.E. and Murray, W., “Newton-type Methods for Linearly Constrained Optimization,” In: Numerical Methods for Constrained Optimization (Gill & Murray, eds.), pp. 29–66. Academic Press, New York 1974.

    Google Scholar 

  41. Griewank, A.O., Analysis and Modifications of Newton’s Method at Singularities. Ph.D. Thesis, Australian National University, 1980.

    Google Scholar 

  42. Decker, D.W. and Kelley, C.T., “Newton’s Method at Singular Points, I and II,” SIAM J. Num. Anal., 17, pp. 66–70; 465-471, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  43. Hansen, E., “Global Optimization Using Interval Analysis-The Multi Dimensional Case,” Numer. Math., 34, pp. 247–270, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  44. Kao, J.-J., Brill, E. D., Jr., and Pfeffer, J. T., “Generation of Alternative Optima for Nonlinear Programming Problems,” Eng. Opt., 15, pp. 233–251, 1990.

    Article  Google Scholar 

  45. Ge, R., “Finding More and More Solutions of a System of Nonlinear Equations,” Appl. Math. Computation, 36, pp. 15–30, 1990.

    Article  MATH  Google Scholar 

  46. Laarhoven, P. J. M. van., and Aarts, E., Simulated Annealing: Theory and Applications, D. Reidel Publishing, Dordrecht, The Netherlands, 1987.

    MATH  Google Scholar 

  47. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Co. Inc., Reading, Massachusetts, 1989.

    MATH  Google Scholar 

  48. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., “Equation of State Calculations by Fast Computing Machines,” J. Chem. Physics, 21(6), pp. 1087–1092, 1953.

    Article  Google Scholar 

  49. Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, 220 (4598), pp. 671–680, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  50. Cerny, V., “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm,” J. Opt. Theory Appl., 45, pp. 41–52, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  51. Rutenbar, R. A., “Simulated Annealing Algorithms: An Overview,” IEEE Circuits and Devices, January, pp. 19–26, 1989.

    Google Scholar 

  52. Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C, “Optimization by Simulated Annealing: An Experimental Evaluation. Part I. Graph Partitioning,” Operations Research, 37, 1990, pp. 865–893.

    Article  Google Scholar 

  53. Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines, A Stochastic Approach to Combinatorial Optimization and Neural Computing, John Wiley & Sons, 1989.

    Google Scholar 

  54. Nahar, S., Sahni, S., and Shragowithz, E. V., in the Proceedings of 22nd Design Automation Conf., Las Vegas, June 1985, pp. 748–752.

    Google Scholar 

  55. Elperin, T, “Monte Carlo Structural Optimization in Discrete Variables with Annealing ALgorithm,” Int. J. Num. Meth. Eng., 26, 1988, pp. 815–821.

    Article  MATH  Google Scholar 

  56. Kincaid, R. K., and Padula, S. L., “Minimizing Distortion and Internal Forces in Truss Structures by Simulated Annealing,” Proceedings of the AIAA/ASME /ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA., 1990, Part 1, pp. 327–333.

    Google Scholar 

  57. Balling, R. J., and May, S. A., “Large-Scale Discrete Structural Optimization: Simulated Annealing, Branch-and-Bound, and Other Techniques,” presented at the AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics, and Materials Conference, Long Beach, CA., 1990.

    Google Scholar 

  58. Chen, G.-S., Bruno, R. J., and Salama, M., “Optimal Placement of Active/Passive Members in Structures Using Simulated Annealing,” AIAA J., 29(8), August 1991, pp. 1327–1334.

    Article  Google Scholar 

  59. Holland, J. H., Adaptation of Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  60. De Jong, K. A., Analysis of the Behavior of a Class of Genetic Adaptive Systems (Doctoral Dissertation, The University of Michigan; University Microfilms No. 76-9381), Dissertation Abstracts International, 36(10), 5140B, 1975.

    Google Scholar 

  61. Booker, L., “Improving Search in Genetic Algorithms,” in Genetic Algorithms and Simulated Annealing, Ed. L. Davis, Morgan Kaufmann Publishers, Inc., Los Altos, CA. 1987, pp. 61–73.

    Google Scholar 

  62. Goldberg, D. E., and Samtani, M. P., “Engineering Optimization via Genetic Algorithm,” Proceedings of the Ninth Conference on Electronic Computation, ASCE, February 1986, pp. 471–482.

    Google Scholar 

  63. Hajela, P., “Genetic Search—An Approach to the Nonconvex Optimization Problem,” AIAA J., 28(7), July 1990, pp. 1205–1210.

    Article  Google Scholar 

  64. Rao, S. S., Pan, T.-S., and Venkayya, V. B., “Optimal Placement of Actuators in Actively Controlled Structures Using Genetic Algorithms,” AIAA J., 29(6), pp. 942–943, June 1991.

    Article  Google Scholar 

  65. Szu, H., and Hartley, R.L., “Nonconvex Optimization by Fast Simulated Annealing,” Proceedings of the IEEE, 75(11), pp. 1538–1540, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haftka, R.T., Gürdal, Z. (1992). Unconstrained Optimization. In: Elements of Structural Optimization. Solid Mechanics And Its Applications, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2550-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2550-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1505-6

  • Online ISBN: 978-94-011-2550-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics