Skip to main content

Foraging of Scavenging Deep-Sea Lysianassoid Amphipods

  • Chapter
Deep-Sea Food Chains and the Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASIC,volume 360))

Abstract

Literature on the biology and ecology of bait-attending, deep-sea lysianassoid amphipods was critically reviewed to assess our current understanding of their foraging. Olfaction, possibly combined with a rheotactic swimming behavior, is probably the principal means of detection and localization of bait, but alternative or complementary means have been proposed (territorial collapse, mechanoreception of bait impact on bottom or of sounds of aggregated feeders). Deep-sea, bait-attending lysianassoids seemingly divide into two functional groups. Individuals of the first group (Eurythenes, possibly Paralicella and others) have mandibles and guts modified for rapid and gluttonous feeding, process food in discrete batches, and may survive long periods without feeding. Individuals of the second group (genera of the Orchomene complex) have mandibles which do not appear to be suited for the rapid ingestion of bait, rather small guts, process food in a more or less continuous manner, and may withstand only short periods of starvation. Although lysianassoids in the former group appear to be very well adapted for the detection, localization and consumption of carrion, it seems unlikely that any deep-sea species is an obligate necrophage. The extensive vertical range of deep-sea lysianassoids above bottom indeed suggests that species compensate for deficient bottom resources by foraging in the water column. Deep-sea lysianassoids may be able to sequester carrion from other scavengers. The quantity and quality of carrion or of carrion byproducts (scavenger feces, biomass and offspring) which are passed along to the non-scavenging fauna, as well as the time scale for dispersal of these resources, should largely depend on the kinds of scavengers aggregated to consume bait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarset, A.V. and Aunaas, T. (1990) Influence of environmental salinity on oxygen consumption and ammonia excretion of the arctic under-ice amphipod Onisimus glacialis, Mar. Biol. 107, 9–15.

    Article  Google Scholar 

  • Armitage, K.B. (1962) Temperature and oxygen consumption of Orchomenella chilensis (Heller) (Amphipoda: Gammeroidea), Biol. Bull. 123, 225–232.

    Article  Google Scholar 

  • Arnaud, P.M. (1970) Frequency and ecological significance of necrophagy among benthic species of antarctic coastal waters, in M.W. Holdgate (ed.), Antarctic Ecology, Vol. 1, Academic Press, New York, pp. 259–267.

    Google Scholar 

  • Baldwin, R.I. and Smith, K.L., Jr. (1987) Temporal variation in the catch rate, length, color and sex of the necrophagous amphipod, Eurythenes gryllus, from the central and eastern North Pacific, Deep-Sea Res. 34, 425–439.

    Article  Google Scholar 

  • Barnard, J.L. (1961) Gammaridean Amphipoda from depths of 400 to 6000 meters, Galathea Rep. 5, 23–128.

    Google Scholar 

  • Barnard, J.L. (1962) South Atlantic abyssal amphipods collected by R.V. Vema, Abyssal Crustacea, Vema Res. Ser. 1, 1–78.

    Google Scholar 

  • Barnard, J.L. and Ingram, C.L. (1986) The supergiant amphipod Alicella gigantea Chevreux from the North Pacific Gyre, J. Crust. Biol. 6, 825–839.

    Article  Google Scholar 

  • Bary, B. M.c.K. (1966) Back scattering at 12 kc/s in relation to biomass and numbers of zooplanktonic organisms in Saanich Inlet, British Columbia, Deep-Sea Res. 13, 655–666.

    Google Scholar 

  • Birstein, J.A. and Vinogradov, M.E. (1960) Pelagic gammarids from the tropical Pacific Ocean, Trud. Inst. Okeanol. 34, 165–241. (In Russian).

    Google Scholar 

  • Bohé-Lafrique, S. (1985) Les équarisseurs épibenthiques dans l’Atlantique nord-est profond, Thèse de 3e cycle, Université d’Aix-Marseille II, Aix-Marseille.

    Google Scholar 

  • Bowman, T.E. and Manning, R.B. (1972) Two arctic bathyal crustaceans: the shrimp Bythocaris cryoneus new species, and the amphipod Eurythenes gryllus, with in situ photographs from Ice Island T-3, Crustaceana 23, 187–201.

    Article  Google Scholar 

  • Bregazzi, P.K. (1972) Life cycles and seasonal movements of Cheirimedon femoratus (Pfeffer) and Tryphosella kergueleni (Miers) (Crustacea: Amphipoda), Br. Antarct. Surv. Bull. 30, 1–34.

    Google Scholar 

  • Bregazzi, P.K. (1973) Locomotor activity rhythms in Tryphosella kergueleni (Miers) and Cheirimedon femoratus (Pfeffer) (Crustacea, Amphipoda), Br. Antarct. Surv. Bull. 33–34, 17-32.

    Google Scholar 

  • Brown, A.C. (1982) The biology of the sandy-beach whelks of the genus Bullia (Nassariidae), Oceanogr. Mar. Biol. Ann. Rev. 20, 309–361.

    Google Scholar 

  • Bruchhausen, P.M., Raymond, J.A., Jacobs, S.S., DeVries, A.L., Thorndike, E.M. and DeWitt, H.H. (1979) Fish, crustaceans, and the sea floor under the Ross Ice Shelf, Science 203, 449–451.

    Article  Google Scholar 

  • Bucklin, A., Wilson, R.R., Jr. and Smith, K.L., Jr. (1987) Genetic differentiation of seamount and basin populations of the deep-sea amphipod Eurythenes gryllus, Deep-Sea Res. 34, 1795–1810.

    Article  Google Scholar 

  • Busdosh, M. and Atlas, R.M. (1975) Response of two arctic amphipods, Gammarus zaddachi and Boeckosimus (Onisimus) affinis, to variations in temperature and salinity. J. Fish. Res. Board Can. 32, 2564–2568.

    Article  Google Scholar 

  • Busdosh, M., Robilliard, G.A., Tarbox, K. and Beehler, C.L. (1982) Chemoreception in an arctic amphipod crustacean: a field study, J. exp. mar. Biol. Ecol. 62, 261–269.

    Article  Google Scholar 

  • Charmasson, S.S. and Calmet, D.P. (1987) Distribution of scavenging Lysianassidae amphipods Eurythenes gryllus in the northeast Atlantic: comparison with studies held in the Pacific, Deep-Sea Res. 34, 1509–1523.

    Article  Google Scholar 

  • Christiansen, B. (1990) Benthopelagisches Nekton, in O. Pfannkuche, W. Beckmann, B. Christiansen, K. Lochte, G. Rheinheimer, H. Thiel and H. Weibert (eds.), BIOTRANS. Biologischer Vertihaltransport und Energiehanshalt in der bodennahen Vasserschricht der Tiefsee, Ber. Zent. Meeres-Klimaforsch. Univ. Hamburg, Vol. 10, pp. 104–129.

    Google Scholar 

  • Christiansen, B., Pfannkuche, O. and Thiel, H. (1990) Vertical distribution and population structure of the necrophagous amphipod Eurythenes gryllus in the West European Basin, Mar. Ecol. Prog. Ser. 66, 35–45.

    Article  Google Scholar 

  • Clarke, A. (1984) The lipid content and composition of some Antarctic macrozooplankton, Br. Antarct. Surv. Bull. 63,57–70.

    Google Scholar 

  • Dahl, E. (1979) Deep-sea carrion feeding amphipods: evolutionary patterns in niche adaptation, Oikos 33, 167–175.

    Article  Google Scholar 

  • Dahl, E., Emmanuelsson, H. and von Mecklenburg, C. (1970) Pheromone transport and reception in an amphipod, Science 170, 739–740.

    Article  Google Scholar 

  • Daniel, P.C. and Bayer, R.C. (1987) Temporal changes in release rates and quality of lobster (Homarus americanus) feeding attractants from herring (CLupea harengus) baits, Mar. Behav. Physiol. 13, 13–27.

    Article  Google Scholar 

  • Dayton, P.K. and Hessler, R.R. (1972) Role of biological disturbance in maintaining diversity in the deep sea, Deep-Sea Res. 19, 199–208.

    Google Scholar 

  • De Broyer, C. and Thurston, M.H. (1987) New Atlantic material and redescription of the type specimens of the giant abyssal amphipod Alicella gigantea Chevreux (Crustacea), Zool. Scr. 16, 335–350.

    Article  Google Scholar 

  • Desbruyères, D., Geistdoerfer, P., Ingram, C.L., Khripounoff, A. and Lagardèrre, J.P. (1985) Répartition des populations de l’épibenthos carnivore, in L. Laubier and C. Monniot (eds.), Peuplements pro fonds du golfe de Gascogne, IFREMER, pp. 233-252.

    Google Scholar 

  • Eriksson, S., Evans, S. and Tallmark, S. (1975) On the coexistence of scavengers on shallow, sandy bottoms in Gullmar Fjord (Sweden): activity patterns and feeding ability, ZOON 3, 121–124.

    Google Scholar 

  • Fielder, D.R. (1965) The spiny lobster, Jasus LaLandei (H. Milne-Edwards), in southern Australia III. Food, feeding and locomotor activity, Aust. J. mar. freshwater Res. 16, 351–367.

    Article  Google Scholar 

  • George, R.Y. (1979) What adaptive strategies promote immigration and speciation in deep-sea environment, Sarsia 64, 61–65.

    Google Scholar 

  • Guennegan, Y. and Rannou, M. (1979) Semi-diurnal rhythmic activity in deep-sea benthic fishes in the Bay of Biscay, Sarsia 64, 113–116.

    Google Scholar 

  • Haedrich, R.L. and Rowe, G.T. (1977) Megafaunal biomass in the deep sea, Nature 269, 141–142.

    Article  Google Scholar 

  • Hamner, P. and Hamner, W.M. (1977) Chemosensory tracking of scent trails by the planktonic shrimp Acetes sibogae australis, Science 195, 886–888.

    Article  Google Scholar 

  • Hargrave, B.T. (1985) Feeding rates of abyssal scavenging amphipods (Eurythenes gryllus) determined in situ by time-lapse photography, Deep-Sea Res. 32, 443–450.

    Article  Google Scholar 

  • Hecker, B. (1976) Baited-traps: benthic baseline DOMES, Deep Ocean Mining Environmental Study, Final Rep. 29.

    Google Scholar 

  • Heldt, J.-H. (1952) Note sur quelques petits crustaces ichthyophages, Bull. Soc. Sci. Nat. Tunisie 5, 111–113.

    Google Scholar 

  • Hessler, R.R., Ingram, C.L., Yayanos, A.A. and Burnett, B.R. (1978) Scavenging amphipods from the floor of the Philippine Trench, Deep-Sea Res. 25, 1029–1047.

    Article  Google Scholar 

  • Hessler, R.R., Isaacs, J.D. and Mills, E.L. (1972) Giant amphipod from the abyssal Pacific Ocean, Science 175,636–637.

    Article  Google Scholar 

  • Howard, A.E. (1980) Substrate and tidal limitations on the distribution and behaviour of the lobster and edible crab, Progr. Underwat. Sci. 52, 165–169.

    Google Scholar 

  • Ingram, C.L. and Hessler, R.R. (1983) Distribution and behavior of scavenging amphipods from the central North Pacific, Deep-Sea Res. 30, 683–706.

    Article  Google Scholar 

  • Ingram, C.L. and Hessler, R.R. (1987) Population biology of the deep-sea amphipod Eurythenes gryllus: inferences from instar analyses, Deep-Sea Res. 34, 1889–1910.

    Article  Google Scholar 

  • Isaacs, J.D. (1969), The nature of oceanic life, Scient. Am. 221, 146–162.

    Article  Google Scholar 

  • Isaacs, J.D. and Schwartzlose, R.A. (1975), Active animals of the deep-sea floor, Scient. Am. 233, 84–91.

    Article  Google Scholar 

  • Jannasch, H.W., Cuhel, R.L., Wirsen, C.O. and Taylor, C.D. (1980) An approach for in situ studies of deep-sea amphipods and their microbial gut flora, Deep-Sea Res. 27, 867–872.

    Article  Google Scholar 

  • Jumars, P.A. and Gallagher, E.D. (1982) Deep-sea community structure: three plays on the benthic proscenium, in W.G. Ernst and J.G. Morin (eds.), The environment of the deep sea, Prentice Hall, Englewood Cliffs, pp. 217-255.

    Google Scholar 

  • Kolakowska, A. (1987) Lipids of some Antarctic animals of the Admiralty Bay (King George Island, South Shetland Islands), Pol. Polar Res. 8, 391–402.

    Google Scholar 

  • Kuznetsov, V.V. (1964) Biologiya massovykh i naibolee obytginykh vidov rakoobraznykh Barentseva i Belogo Morei, Akademiya Nauk SSSR, Moscow.

    Google Scholar 

  • Lampitt, R.S., Merrett, N.R. and Thurston, M.H. (1983) Inter-relations of necrophagous amphipods, a fish predator, and tidal currents in the deep sea, Mar. Biol. 74, 73–78.

    Article  Google Scholar 

  • Laver, M.B., Olsson, M.S., Edelman, J.L. and Smith, K.L., Jr. (1985) Swimming rates of scavenging deep-sea amphipods recorded with a free-vehicle video camera, Deep-Sea Res. 32, 1135–1142.

    Article  Google Scholar 

  • Lincoln, R.I., and Hurley, D.E. (1981) The calceolus, a sensory structure of gammaridean amphipods (Amphipoda: Gammaridea), Bull. Br. Mus. nat. Hist. 44, 85–101.

    Google Scholar 

  • Lipps, J.H., Ronan, T.E., Jr., and DeLaca, T.E. (1979) Life below the Ross Ice Shelf, Antarctica, Science 203, 447–449.

    Article  Google Scholar 

  • LØkkeborg, S. (1990) Rate of release of potential feeding attractants from natural and artificial bait, Fish. Res. 8, 253–261.

    Article  Google Scholar 

  • Lowry, J.K. (1986) The callynophore, a eucaridan/peracaridan sensory organ prevalent among the Amphipoda (Crustacea), Zool. Scr. 15, 333–349.

    Article  Google Scholar 

  • MacDonald, A.G. and Gilchrist, I. (1978) Further studies on the pressure tolerance of deepsea Crustacea, with observations using a new high-pressure trap, Mar. Biol. 45, 9–21.

    Article  Google Scholar 

  • MacDonald, A.G. and Gilchrist, I. (1980) Effects of hydraulic decompression and compression on deep sea amphipods, Compo Biochem. Physiol. 67, 149–153.

    Article  Google Scholar 

  • Mauchline, I. and Ballantyne, R.S. (1975) The integumental organs of amphipods, J. mar. biol. Ass. U.K. 55, 345–355.

    Article  Google Scholar 

  • Meador, J.P. (1981) Chemoreception and food-finding abilities of a lysianassid amphipod, M.Sc. thesis, San Diego State Univ., San Diego, California.

    Google Scholar 

  • Meador, J.P. (1989) Chemoreception in a lysianassid amphipod: the chemicals that initiate food-searching behavior, Mar. Behav. Physiol. 14, 65–80.

    Article  Google Scholar 

  • Miller, R.I. (1983) Considerations for conducting field experiments with baited traps, Fisheries 8, 14–17.

    Article  Google Scholar 

  • Miller, R.J. (1990) Effectiveness of crab and lobster traps, Can. J. Fish. Aquat. Sci. 47, 1228–1251.

    Article  Google Scholar 

  • Moore, P. and Atema, J. (1988) A model of a temporal filter in chemoreception to extract directional information from a turbulent odor plume, Biol. Bull. 174, 355–363.

    Article  Google Scholar 

  • Nelson, W.G. (1980) Reproductive patterns in gammaridean amphipods, Sarsia 65, 61–71.

    Google Scholar 

  • Okubo, A. (1980) Diffusion and ecological problems: mathematical models, Springer-Verlag, Berlin.

    Google Scholar 

  • Oliver, J.S. and Slattery, P.N. (1985) Destruction and opportunity on the sea floor: effects of graywhale feeding, Ecology 66, 1965–1975.

    Article  Google Scholar 

  • Opalinski, K.W. and K. Jazdzewski (1978) Respiration of some antarctic amphipods, Pol. Arch. Hydrobiol. 25, 643–655.

    Google Scholar 

  • Oshel, P.E. and Steele, D.H. (1988) SEM morphology of the foreguts of gammaridean amphipods compared to Anaspides tasmaniae (Anaspidacea: Anaspididae), Gnathophausia ingens (Mysiadacea: Lophogastridae), and Idotea balthica (Isopoda: Idoteidae), Crustaceana Suppl. 13, 209–219.

    Google Scholar 

  • Oshel, P.E., Steele, V.J. and Steele, D.H. (1988) Comparative SEM morphology of amphipod microtrich sensilla, Crustaceana Suppl. 13, 100–106.

    Google Scholar 

  • Paul, A.Z. (1973) Trapping and recovery of living deep-sea amphipods from the Arctic Ocean floor, Deep-Sea Res. 20, 289–290.

    Google Scholar 

  • Pearse, J.S. and Giese, A.C. (1966) The organic constitution of several invertebrates from McMurdo Sound, Antarctica, Compo Biochem. Physiol. 18, 47–57.

    Article  Google Scholar 

  • Penry, D.L. and Jumars, P.A. (1987) Modeling animal guts as chemical reactors, Am. Nat. 129, 69–96.

    Article  Google Scholar 

  • Percy, J.A. (1975) Ecological physiology of arctic marine invertebrates. Temperature and salinity relationships of the amphipod Onisimus affinis H.J. Hansen, J. expo mar. Biol. Ecol. 20, 99–117.

    Article  Google Scholar 

  • Percy, J.A. (1979) Seasonal changes in organic composition and caloric content of an arctic marine amphipod, Onisimus (=Boeckosimus) affinis H.J. Hansen, J. expo mar. Biol. Ecol. 40, 183–192.

    Article  Google Scholar 

  • Percy, J.A. and Fife, F.J. (1981) The biochemical composition and energy content of arctic marine zooplankton, Arctic 34, 307–313.

    Google Scholar 

  • Present, T.M.C. and Smith, C.R. (1981) Feeding activity and energetics in Orchomene n.sp.: project summary, in K.R. Hinga (ed.), Subseabed disposal program annual report, January to September 1981, no. 2, Sandia National Laboratories, Albuquerque, New Mexico, pp. 535–558.

    Google Scholar 

  • Presler, P. (1986) Necrophagous invertebrates of the Admiralty Bay of King George Island (South Shetland Islands, Antarctica), Pol. Polar Res. 7, 25–61.

    Google Scholar 

  • Priede, I.G., Smith, K.L., Jr. and Armstrong, J.D. (1990) Foraging behavior of abyssal grenadier fish: inferences from acoustic tagging and tracking in the North Pacific Ocean, Deep-Sea Res. 37, 81–101.

    Article  Google Scholar 

  • Rakusa-Suszczewski, S. (1982) The biology of Orchomene plebs (Hurley 1965) (Amphipoda: Gammaridea) from McMurdo Sound, Ross Sea, Antarctic, Polar Biol. 1, 47–54.

    Article  Google Scholar 

  • Rittschof, D. (1980) Enzymatic production of small molecules attracting hermit crabs to simulated gastropod predation sites, J. Chern. Ecol. 6, 665–675. Rowe, G.T., Merrett, N., Shepherd, J, Needler, G., Hargrave, B.T. and Marietta, M. (1986a) Estimates of direct biological transport of radioactive waste in the deep sea with special reference to organic carbon budgets, Oceanol. Acta 9, 199-208.

    Article  Google Scholar 

  • Rowe, G.T., Sibuet, M. and Vangriesheim, A. (1986b) Domains of occupation of abyssal scavengers inferred from baited cameras and traps on the Demerara Abyssal Plain, Deep-Sea Res. 33, 501–522.

    Article  Google Scholar 

  • Rowe, G.T. and Staresinic, N. (1979) Sources of organic matter to the deep-sea benthos, Amdio Spec. Rep. 6, 19–24.

    Article  Google Scholar 

  • Ryall, P.J.C. and Hargrave, B.T. (1984) Attraction of the Atlantic wreckfish (Polyprion americanus) to an unbaited camera on the Mid-Atlantic Ridge, Deep-Sea Res. 31, 79–83.

    Article  Google Scholar 

  • Sainte-Marie, B. (1984) Morphological adapatations for carrion feeding in four species of littoral or circalittorallysianassid amphipods, Can. J. Zool. 62, 1668–1674.

    Article  Google Scholar 

  • Sainte-Marie, B. (1986a) Foraging by lysianassid amphipods, Ph.D. thesis, Dalhousie Univ., Halifax, NS.

    Google Scholar 

  • Sainte-Marie, B. (l986b) Effect of bait size and sampling time on the attraction of the lysianassid amphipods Anonyx sarsi Steele & Brunel and Orchomenella pinguis (Boeck), J. expo mar. Biol. Ecol. 99, 63–77.

    Google Scholar 

  • Sainte-Marie, B. (1986c) Feeding and swimming by lysianassid amphipods in a shallow coldwater bay, Mar. Biol. 91, 219–229.

    Article  Google Scholar 

  • Sainte-Marie, B. (1987) Meal size and feeding rate of the shallow-water lysianassid Anonyx sarsi (Crustacea: Amphipoda), Mar. Ecoi. Prog. Ser. 40, 209–219.

    Article  Google Scholar 

  • Sainte-Marie, B. A review of the reproductive bionomics of aquatic gammaridean ampbipods: variations of life history traits with latitude, depth, salinity and superfamily, Hydrobiologia (in press).

    Google Scholar 

  • Sainte-Marie, B. and Brunel, P. (1985) Suprabenthic gradients of swimming activity by coldwater gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence, Mar. Ecol. Prog. Ser. 23, 57–69.

    Article  Google Scholar 

  • Sainte-Marie, B. and Hargrave, B.T. (1987) Estimation of scavenger abundance and distance of attraction to bait, Mar. Biol. 94, 431–443.

    Article  Google Scholar 

  • Sainte-Marie, B. and Lamarche, G. (1985) The diets of six species of the carrion-feeding lysianassid amphipod genus Anonyx and their relation to morphology and swimming behavior, Sarsia 70, 119–126.

    Google Scholar 

  • Sainte-Marie, B., Lamarche, G. and Gagnon, J.-M. (1990) Reproductive bionomics of some shallow-water lysianassoids in the Saint Lawrence Estuary, with a review on the fecundity of the Lysianassoidea (Crustacea, Amphipoda), Can. J. Zool. 68, 1639–1644.

    Article  Google Scholar 

  • Sainte-Marie, B., Percy, J.A. and Shea, J.R. (1989) A comparison of meal size and feeding rate of the lysianassid amphipods Anonyx nugax, Onisimus (=Pseudalibrotus) litoralis and Orchomenella pinguis, Mar. Biol. 102, 361–368.

    Article  Google Scholar 

  • Scott, K.J. and Croker, R.A. (1976) Macroinfauna of northern New England marine sand. III. The ecology of Psammonyx nobilis (Stimpson), 1853 (Crustacea: Amphipoda), Can. J. Zool. 54, 1519–1529.

    Article  Google Scholar 

  • Shulenberger, E. and Barnard, J.L. (1976) Amphipods from an abyssal trap set in the North Pacific Gyre, Crustaceana 31, 241–258.

    Article  Google Scholar 

  • Shulenberger, E. and Hessler, R.R. (1974) Scavenging abyssal benthic amphipods trapped under oligotrophic central north Pacific gyre waters, Mar. Biol. 28, 185–187.

    Article  Google Scholar 

  • Slattery, P.N. and Oliver, J.S. (1986) Scavenging and other feeding habits of lysianassid amphipods (Orchomene spp.) from McMurdo Sound, Antarctica, Polar Biol. 6, 171–177.

    Article  Google Scholar 

  • Smith, C.R. (1985) Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa Catalina Basin floor, Deep-Sea Res. 32, 417–442.

    Article  Google Scholar 

  • Smith, C.R (1986) Nekton falls, low-intensity disturbance and community structure of infaunal benthos in the deep sea, J. Mar. Res. 44, 567–600.

    Article  Google Scholar 

  • Smith, K.L., Jr. and Baldwin, R.I. (1982) Scavenging deep-sea amphipods: effects of food odor on oxygen consumption and a proposed metabolic strategy, Mar. Biol. 68, 287–298.

    Article  Google Scholar 

  • Smith, K.L., Jr. and Baldwin, R.J. (1984) Vertical distribution of the necrophageous amphipod, Eurythenes gryllus, in the North Pacific: spatial and temporal variation, Deep-Sea Res 31, 1179–1196.

    Article  Google Scholar 

  • Smith, K.L., Jr., White, G.A., Laver, M.B., McConnaughey, R.R and Meador, J.P. (1979) Free vehicle capture of abyssopelagic animals, Deep-Sea Res. 26, 57–64.

    Article  Google Scholar 

  • Stenton-Dozey, J.M.E. and Brown, A.C. (1988) Feeding, assimilation, and scope for growth in the scavenging sandy-beach neogastropod Bullia digitalis (Dillwyn), J. expo mar. Biol. Ecol. 119, 253–268.

    Article  Google Scholar 

  • Stepien, C.A. and Brusca, R.C. (1985) Nocturnal attacks on nearshore fishes in southern California by crustacean zooplankton, Mar. Ecol. Prog. Ser. 25, 91–105.

    Article  Google Scholar 

  • Stockton, W.L. (1982) Scavenging amphipods from under the Ross Ice Shelf, Antarctica, Deep-Sea Res. 29, 819–835.

    Article  Google Scholar 

  • Stockton, W.L. and DeLaca, T.E. (1982) Food falls in the deep sea: occurrence, quality, and significance, Deep-Sea Res. 29, 157–169.

    Article  Google Scholar 

  • Templeman, W. (1967) Predation on living fishes on longline in Baffin Bay by the amphipod Eurythenes gryllus (Lichtenstein), and a new distribution record, J. Fish. Res. Board Can. 24, 215–217.

    Article  Google Scholar 

  • Thurston, M.H. (1979) Scavenging abyssal amphipods from the north-east Atlantic Ocean, Mar. Biol. 51, 55–68.

    Article  Google Scholar 

  • Thurston, M.H. (1990) Abyssal necrophagous amphipods (Crustacea: Amphipoda) in the northeast and tropical Atlantic Ocean, Prog. Oceanog. 24, 257–274.

    Article  Google Scholar 

  • Whiteley, G.C. (1948) The distribution of larger planktonic Crustacea on Georges Bank, Ecol. Monogr. 18, 233–264.

    Article  Google Scholar 

  • Wickins, J.F. (1983) Catches of large lysianassid amphipods in baited traps at the Nuclear Energy Authority dump site during June 1979, Deep-Sea Res. 30, 83–86.

    Google Scholar 

  • Wilson, R.R., Jr. and Smith, K.L., Jr. (1984) Effect of near-bottom currents on detection of bait by the abyssal grenadier fishes Coryphaenoides spp., recorded in situ with a video camera on a free vehicle, Mar. Biol. 84, 83–91.

    Article  Google Scholar 

  • Wirsen, C.O. and Jannasch, H.W. (1983) In situ studies on deep-sea amphipods and their intestinal microflora, Mar. Biol. 78, 69–73.

    Article  Google Scholar 

  • Wolff, T. (1971) Archimede dive 7 to 4160 metres at Madeira: observations and collecting results, Vidensk. Meddr. dansk naturh. Foren. 134, 127–147.

    Google Scholar 

  • Yayanos, A.A. (1978) Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters, Science 200, 1056–1059.

    Article  Google Scholar 

  • Yayanos, A.A. (1981) Reversible inactivation of deep-sea amphipods (Parlicella capresca) by a decompression from 601 bars to atmospheric pressure, Comp. Biochem. Physiol. 69, 563–565.

    Article  Google Scholar 

  • Yayanos, A.A. and Nevenzel, J.C. (1978) Rising-particle hypothesis: rapid ascent of matter from the deep ocean, Naturwiss. 65, 255–256.

    Article  Google Scholar 

  • Zimmer-Faust, R.K. and Case, J.F. (1982) Odors influencing foraging behavior of the California spiny lobster, Panulirus interruptus, and other Decapod Crustacea, Mar. Behav. Physiol. 9, 35–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sainte-Marie, B. (1992). Foraging of Scavenging Deep-Sea Lysianassoid Amphipods. In: Rowe, G.T., Pariente, V. (eds) Deep-Sea Food Chains and the Global Carbon Cycle. NATO ASI Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2452-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2452-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5082-1

  • Online ISBN: 978-94-011-2452-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics