Skip to main content

A new thermodynamically based correlation of chemotrophic biomass yields

  • Chapter
Quantitative Aspects of Growth and Metabolism of Microorganisms
  • 194 Accesses

Abstract

A new, generally applicable, thermodynamically based method is proposed to provide an estimation of the biomass yield on arbitrary organic and inorganic substrates. Aerobic, anaerobic, denitrifying growth systems with and without reversed electrontransport are covered. The biomass yield can be estimated with only 15% error in a very wide range of microbial growth systems and biomass yields (0.01-0.80C-mol/(C)-mol). This method is based on the use of‘Gibbs energy dissipated per C-mol produced biomass’(designated as \( D_S^{01}/{r_{Ax}}\) ) as the central parameter. Moreover the insufficiency of other methods based on YATP, YAveoYc and enthalpy or Gibbs energy efficiencies is shortly discussed. Also it appeared to be possible to understand the obtained correlation of \( D_S^{01}/{r_{Ax}}\) in general biochemical terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Asswell J & Ferry JG (1978). A new method of culturing methanogens with organic acids: characteristics of an isolate mass cultured with formate. Abstracts Ann. Meeting Am. Soc. Microbiol. I: 45

    Google Scholar 

  • Battley EH (1960) A theoretical approach to the study of the thermodynamics of growth of Saccharomyces cerevisiae. Physiologia plantarum 13: 674–686

    Article  CAS  Google Scholar 

  • Battley EH (1987) Energetics of Microbial Growth. John Wiley and Sons

    Google Scholar 

  • Blevins WT & Perry JJ (1971) Efficiency of a soil Mycobacterium during growth on hydrocarbons and related substrates. Zeitschrift für algenreine Mikrobiologie 11: 181–190

    Article  CAS  Google Scholar 

  • Bruinenberg PM, Van Dijken JP & Scheffers WA (1983) A theoretical analysis of NADPH production and consumption in yeasts. J. of Gen. Microbiol. 129: 953–964

    CAS  Google Scholar 

  • Frankena J, van Verseveld HW & Stouthamer AH (1988) Substrate and energy costs of the production of exocellular enzymes by Bacillus licheniformis. Biotechnol. and Bioengin. 32: 803–812

    Article  CAS  Google Scholar 

  • Fuchs G, Thauer R, Ziegler H & Stichler W (1979) Carbon isotope fractionation by methanohacterium thermoautotrophicum. Arch. of Microbiol. 120: 135–139

    Article  CAS  Google Scholar 

  • Hazeu W, Bijleveld W, Grotenhuis JTC, Kakes E & Kuenen JG (1986) Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. A. van Leeuwenhoek 52: 507–518

    Article  CAS  Google Scholar 

  • Hazeu W. Schmedding DJ, Goddijn O, Bos P & Kuenen JG (1987) The importance of the sulfur oxidizing capacity of Thiobacillus ferrooxidans during leaching of pyrite. Proc. 4th Eur. Conf. Biotechnol. 3: 497. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Heijnen JJ & Roels JA (1981) A macroscopic model describing yield and maintenance relationships in aerobic fermentation process. Biotechnol. and Bioeng. 23: 739–763

    Article  CAS  Google Scholar 

  • Heijnen JJ & Van Dijkcn JP (1991) In starch of a thermodynamic description of biomass yields for the chemotrophic growth of micro organisms. Biotechnol. and Bioeng. (in press)

    Google Scholar 

  • Iehana M (1990) Kinetic analysis of the growth of Chlorella vulgaris. Biotechnol. and Bioeng. 36: 198–206

    Article  Google Scholar 

  • Kelly DP (1990) Energetics of chemolithotrophs. In: Krulwich TA (Ed) The Bacteria. Vol 12: 449–478. Bacterial Energetics, Academic Press, San Diego

    Google Scholar 

  • Linton JD & Stephenson RJ (1978) A preliminary study on growth yields in relation to the carbon and energy content of various organic growth substrates. FEMS Microbiol. Let. 3: 95–98

    Article  CAS  Google Scholar 

  • Lynd L & Zeikus JG (1983) Metabolism of H2-CO2, methanol, and glucose by hutyribacterium methylotrophicum. J. of Bacteriol. 153: 1415–1423

    CAS  Google Scholar 

  • Mayberry WR. Prochazka GJ & Payne WJ (1967) Growth yields of bacteria on selected organic compounds. Appl. Microbiol. 15: 1332–1338

    PubMed  CAS  Google Scholar 

  • Meijer O & Schlegel HG (1983) Biology of aerobic carbon monoxideoxidizing bacteria. Ann. Rev. of Microbiol. 37: 277–310

    Article  Google Scholar 

  • Minkevich IG & Eroshin VK (1973) Productivity and heat generation of fermentation under oxygen limitation. Folia Microbiol. 18: 376–385

    Article  CAS  Google Scholar 

  • Morii H, Koga Y & Nagai S (1987) Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in Hydrogen-Limited continuous cultures. Biotechnol. and Bioeng. 29: 310–315

    Article  CAS  Google Scholar 

  • Van Niel E (1990) Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification. Ph Thesis, Delft University of Technology

    Google Scholar 

  • Pronk JT, Meesters PJW, Van Dijken JP, Bos P & Kuenen JG (1990) Heterotrophic growth of Thiobacillus acidophilus in batch and chemostat cultures. Arch. of Microbiol. 153: 392–398

    Google Scholar 

  • Robertson LA (1988) Aerobic denitrification and heterotrophic nitrification in Thiosphaera pantotropha and other bacteria. PhD. thesis. Delft University of Technology, The Netherlands

    Google Scholar 

  • Rods JA (1983) Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press

    Google Scholar 

  • Rutgers M (1990) Control and thermodynamics of microbial growth. PhD thesis, University of Amsterdam

    Google Scholar 

  • Schink B (1984b) Clostridium magnum sp.now., a non autotrophic homoacetogenic bacterium. Arch. of Microbiol. 137: 250–255

    Article  CAS  Google Scholar 

  • Schink B (1984a) Fementation of 2,3-butanediol by Pelobacter carbinolicus sp.nov. and Pelobacter propionicus sp.nov., and evidence for propionate formation from C2 compounds. Arch. of Microbial. 137: 33–41

    Article  CAS  Google Scholar 

  • Siegel RS & O11is DF (1984) Kinetics of growth of the hydroge noxidizing Bacterium Alcaligenes eutrophus (ATCC 17707) in chemostat culture. Biotechnol. and Bioeng. 26: 764–770

    Article  CAS  Google Scholar 

  • Von Stockar U & Birou B (1989) The heat generated by yeast cultures with a mixed metabolism in the transition between respiration and fermentation. Biotechnol. and Bioeng. 34: 86–101

    Article  Google Scholar 

  • Stouthamer AH (1988) Bioenergetics and yields with electronacceptors other than oxygen. In: Erickson LE & Yee-Chak Fung D (Eds) Handbook on Anaerobic Fermentation (345427). Dekker Marcel Inc., New York

    Google Scholar 

  • Stouthamer AH (1979) In search of a correlation between theoretical and experimental growth yields. In: Quayle JR (Ed) Microbial Biochemistry, Vol 21: 1–48. University Park Press, Baltimore

    Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. A. van Leeuwenhoek 39: 545–565

    Article  CAS  Google Scholar 

  • Sublette KL (1987) Aerobic oxidation of hydrogen sulfide by Thiobacullus denitrificans. Biotechnol. and Bioeng. 29: 690–695

    Article  CAS  Google Scholar 

  • Taylor GT & Pirt SG (1977) Nutrition and factors limiting the growth of a methanogenic bacterium. Arch. of Microbiol. 113: 17–22

    Article  CAS  Google Scholar 

  • Verduyn C (1991) Physiology of yeasts in relation to growth yields. A. van Leeuwenhoek 60 (this issue)

    Google Scholar 

  • Van Verseveld HW (1979) Influence of environmental factors on the efficiency of energy conservation in Paracoccus denitrificans. PhD thesis. Free University of Amsterdam

    Google Scholar 

  • Westerhoff HV & Van Dam K (1987) Mosaic Non-equilibrium Thermodynamics and the Control of Biological Free Energy Transduction. Elsevier, Amsterdam

    Google Scholar 

  • Zehnder AJB (1989) Biology of Anaerobic Microorganisms. John Wiley and Sons

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heijnen, J.J. (1992). A new thermodynamically based correlation of chemotrophic biomass yields. In: Stouthamer, A.H. (eds) Quantitative Aspects of Growth and Metabolism of Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2446-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2446-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5079-1

  • Online ISBN: 978-94-011-2446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics