Skip to main content

Quantitative approaches to the analysis of the control and regulation of microbial metabolism

  • Chapter
Quantitative Aspects of Growth and Metabolism of Microorganisms
  • 193 Accesses

Abstract

Recently, a number of novel ways of considering the control, regulation and thermodynamics of microbial physiology have been developed and applied. We here present an overview of the new concepts involved, of their limitations and of the most recent attempts to deal with those limitations. We conclude that there no longer exist reasons of principle for vagueness in discussions of the control of microbial physiology and energetics. Further, the novel conceptual methods serve to remove part of the discordance between holistic and reductionistic views of microbial physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acerenza L, Sauro HM & Kacser H (1989) Control analysis of time-dependent metabolic systems. J. Theor. Biol. 137: 423–444

    Article  PubMed  CAS  Google Scholar 

  • Barthelmess IB, Curtis CF & Kacser H (1974) Control of flux toarginine in Neurospora crassa. J. Mol. Biol. 87: 303–316

    Article  PubMed  CAS  Google Scholar 

  • Brand MD & Murphy MP (1997) Control of electron flux through the respiratory chain in mitochondria and cells. Biolog. Rev. 62: 141–193

    Article  Google Scholar 

  • Burns JA, Cornish-Bowden A, Groen AK, Heinrich R, Kacser H, Porteous JW, Rapoport SM, Rapoport TA, Stucki JW, Tager JM, Wanders RJA & Westerhoff HV (1985) Control analysis of metabolic systems. Trends Biochem. Sci. 10: 16

    Article  CAS  Google Scholar 

  • Caplan SR & Essig A (1983) Bioenergetics and Linear Nonequilibrium Thermodynamics. The Steady State. Cambridge, Massachusetts: Harvard University Press

    Google Scholar 

  • Cascante M, Franco R & Canela EI (1989) Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control I. Unbranched pathways. Mathem. Biosci. 94: 271–288

    Article  CAS  Google Scholar 

  • Cornish-Bowden A & Cárdenas M-L (Eds) (1990) Control of Metabolic Processes. Plenum Press, New York

    Google Scholar 

  • Cornish A, Greenwood JA & Jones CW (1988) The relationship between glucose transport and the production of succinoglucan exopolysaccharide by Agrobacterium radiobacter. J. Gen. Microbiol. 134: 3111–3122

    PubMed  CAS  Google Scholar 

  • Cortassa S, Aon MA & Westerhoff HV (1991) Linear Non Equilibrium Thermodynamics describes the Dynamics of an Autocatalytic System. Biophys. J. 60: 794–803

    Article  PubMed  CAS  Google Scholar 

  • Fell DA & Sauro HM (1985) Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur. J. Biochem. 148: 555–561

    Article  PubMed  CAS  Google Scholar 

  • Flint HJ, Tateson RW, Barthelmess IB, Porteous DJ, Donachie WD & Kacser H (1981) Control of the flux in the arginine pathway of N. crassa. Biochem. J. 200: 231–246

    PubMed  CAS  Google Scholar 

  • Groen AK & Westerhoff HV (1990) Modern Control Theories: a Consumers Test. In: Cornish-Bowden A & Cardenas M-L (Eds) Control of Metabolic Processes (pp 101–118). Plenum Press, New York

    Google Scholar 

  • Groen AK, Van der Meer R, Westerhoff HV, Wanders RJA, Akerboom TPM & Tager JM (1982) Control of metabolic fluxes. In: Sies H (Ed) Metabolic Compartmentation (pp 9–37). Academic Press, New York

    Google Scholar 

  • Heijnen JJ (1991) A new thermodynamically based correlation of chemotrophic biomass yields. A. van Leeuwenhoek 60: (this issue)

    Google Scholar 

  • Heinisch J (1986) Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol. Gen. Genet. 202: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Hellingwerf KJ, Lolkema JS, Otto R, Neijssel OM, Stouthamer AH, Harder W, Van Dam K & Westerhoff HV (1982) Energetics of microbial growth: an analysis of the relationship betwccn growth and its mechanistic basis by mosaic non-equilibrium thermodynamics. FEMS Microbiol. Lett. 15: 7–17

    Article  CAS  Google Scholar 

  • Holstein H & Greenshaw CP (1991) A numerical treatment of metabolic control models. In: Westerhoff HV (Ed) Biothermokinetics Intercept, Andover, UK (in press)

    Google Scholar 

  • Kacser H (1983) The control of enzyme systems in vivo: elasticity analysis of the steady state. Biochem. Soc. Trans. 11: 35–40

    PubMed  CAS  Google Scholar 

  • Kacser H & Porteous JW (1987) Control of metabolism: what do we have to measure? Trends Biochem. Sci. 12: 5–14

    Article  CAS  Google Scholar 

  • Kacser H, Sauro HM & Acerenza L (1990) Control analysis of systems with enzyme-enzyme interactions. In: Cornish-Bowden A & Cárdenas M-L (Eds) Control of Metabolic Processes (pp 251–257). Plenum Press, New York

    Google Scholar 

  • Kahn D & Westerhoff HV (1991) Control theory of regulatory cascades. J. Theor. Biol. 153: 255–285

    Article  PubMed  CAS  Google Scholar 

  • Kahn D & Westerhoff HV (1992) The regulatory strength: how to be precise about regulation and homeostasis. Biotheor. Acta (in press)

    Google Scholar 

  • Kelcti T & Ovádi J (1988) Control of metabolism by dynamic macromolecular interactions. Curr. Top. Cellul. Regul. 29: 1–33

    Google Scholar 

  • Kell DB & Davey CL (1991) On fitting dielectric spectra using artificial neural networks. Bioelectrochem. Bioenerg. (in press)

    Google Scholar 

  • Kell DB, Ryder HM, Kaprelyants AS & Westerhoff HV (1991) Quantifying heterogeneity: flow cytometry of bacterial cultures. A. van Leeuwenhoek 60: (this issue)

    Google Scholar 

  • Kell DB & Welch GR (1991) No turning back: reductionism and complexity in molecular biology. The Times Higher Education Supplement 9–8–91, p 15

    Google Scholar 

  • Kell DB & Westerhoff HV (1985) Catalytic facilitation and membrane bioenergetics. In: Welch GR (Ed) Organized Multienzyme Systems. Catalytic Properties (pp 63–138). Academic Press, New York

    Google Scholar 

  • Kell DB & Westerhoff HV (1986a) Metabolic Control Theory: its role in microbiology and biotechnology. FEMS Microbiol. Rev. 39: 305–320

    Article  CAS  Google Scholar 

  • Kell DB & Westerhoff HV (1986b) Towards a rational approach to the optimisation offlux in microbial biotransformations. Trends Biotechnol. 4: 137–142

    Article  CAS  Google Scholar 

  • Kell DB & Westerhoff HV (1990) Control analysis of organised multienzyme systems. In: Srere PA, Jones ME & Mathews C (Eds) Structural and Organizational Aspects of Metabolic Regulation (pp 273289). Wiley-Liss, New York

    Google Scholar 

  • Kell DB, Van Dam K & Westerhoff HV (1989) Control analysis of microbial growth and productivity. In: Banmberg S, Hunter L & Rhodes M (Eds) Microbial products: New Approaches. Soc. Gen. Microbiol. Symp. 44 (pp 61–93). Cambridge University Press

    Google Scholar 

  • Middleton RJ & Kacser H (1983) Enzyme variation, metabolic flux, and fitness. Alcohol dehydrogenase in Drosophila melanogaster. Genetics 105: 633–650

    PubMed  CAS  Google Scholar 

  • Monod J (1942) Recherches sur la croissance des cultures bactériennes, Herman et Cie, Paris

    Google Scholar 

  • Nicolis G & Prigogine I (1977) Self-Organisation in Nonequilibrium Systems. John Wiley & Sons, New York

    Google Scholar 

  • Ovádi J (1991) On the physiological significance of metabolic channeling. J. Theor. Biol. 152: 1–22

    Article  PubMed  Google Scholar 

  • Reder C (1988) Metabolic control theory: a structural approach. J. Theor. Biol. 135: 175–202

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Bang WG, Koo JH, Min KH & Park SCV (1988) Regulation of glutamine synthetase activity and its biosynthesis in Escherichia coli: mediation by three cycles of covalent modification. In: Boon Chock P, Huang CY, Tsou CL & Wang JH (Eds) Enzyme Dynamics and Regulation (pp 136–145). Springer, Berlin

    Chapter  Google Scholar 

  • Rutgers M, Van Dam K & Westerhoff HV (1991) Control and thermodynamics of microbial growth. Rational tools for bioengineering. CRC Crit Rev. Biotechnol. 11:367–395

    Article  CAS  Google Scholar 

  • Sauro HM, Small JR Sc Fell DA (1987) Metabolic control and its analysis. Extensions to the theory and the matrix method. Eur. J. Biochem. 165: 215–221

    Article  Google Scholar 

  • Savageau MA (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA

    Google Scholar 

  • Savageau MA & Voit EO (1982) Power-law approach to modelling biological systems. I. Theory. J. Ferment. Technol. 60: 221–228

    CAS  Google Scholar 

  • Schaaff I, Heinisch J & Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Small JR (1988) Theoretical aspects of metabolic control. Ph.D. thesis, Oxford Polytechnic

    Google Scholar 

  • Small JR & Fell DA (1989) The matrix method of metabolic control analysis: its validity for complex pathway structures.J. Theor. Biol. 136: 181–197

    Article  PubMed  CAS  Google Scholar 

  • Small JR & Fell DA (1990) Metabolic control analysis: sensitivity of control coefficients to elasticities. Eur. J. Biochem. 191: 413–420

    Article  PubMed  CAS  Google Scholar 

  • Stoffers HJ, Sonnhammer ELL, Blommestijn GJF, Raat HNJ & Westerhoff HV (1991) METASIM: object oriented modelling of cell regulation. CABIOS (in press)

    Google Scholar 

  • Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur. J. Biochem. 109: 269–283

    Article  PubMed  CAS  Google Scholar 

  • Torres NV, Mateo F, Melendez-Hevia E & Kacser II (1986) Kinetics in metabolic pathways. A system in vitro to study the control of flux. Biochem. J. 234: 169–174

    PubMed  CAS  Google Scholar 

  • Van Dam K & Jansen N (1991) Quantification of control of microbial metabolism by substrates and enzymes. A. van Leeuwenhoek 60: (this issue)

    Google Scholar 

  • Voit EO (Ed) (1991) Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity. Van Nostrand Reinhold, New York

    Google Scholar 

  • Voit EO & Savageau MA (1987) Accuracy of alternative representation for integrated biochemical systems. Biochemistry 26: 6869–6880

    Article  PubMed  CAS  Google Scholar 

  • Walter RP, Kell DB & Morris JG (1987) The roles of osmotic stress and water activity in the inhibition of the growth, glycolysis and glucose phosphotransferase system of Clostridium pasteurianum. J. Gen. Microbiol. 133: 259–266

    PubMed  CAS  Google Scholar 

  • Walsh K & Koshland DE, Jr (1985) Characterisation of the rate-controlling steps in vivo by the use of an adjustable expression vector. Proc. Natl. Acad. Sci. USA 82: 3577–3581

    Article  PubMed  CAS  Google Scholar 

  • Welch GR & Keleti T (1990) In: P Srere, ME Jones & C Mathews (Eds) Structural and organizational aspects of metabolic regulation, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol 134 (pp 321–330). Alan R. Liss, New York

    Google Scholar 

  • Westerhoff IIV & Kell DB (1987) Matrix method for determining the steps most rate-limiting to metabolic fluxes in biotechnological processes. Biotechnol. Bioengin. 30: 101–107

    Article  CAS  Google Scholar 

  • Westerhoff IIV & Kell DB (1988) A control theoretical analysis of inhibitor titration assays of metabolic channelling. Comm. Moles. Cellul. Biophys. 5: 57–107

    CAS  Google Scholar 

  • Westerhoff HV & van Dam K (1987) Thermodynamics and Control of Biological Free Energy Transduction. Elsevier, Amsterdam

    Google Scholar 

  • Westerhoff HV, Hellingwerf KJ & van Dam K (1983) Efficiency of microbial growth is low, but optimal for maximum growth rate. Proc. Natl. Acad. Sci. 80: 305–309

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV, Koster JG, van Workum M & Rudd KE (1990) On the control of gene expression. In: Cornish-Bowden A & Cárdenas M-L (Eds) Control of Metabolic Processes (pp 399–412). Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Westerhoff, H.V., van Heeswijk, W., Kahn, D., Kell, D.B. (1992). Quantitative approaches to the analysis of the control and regulation of microbial metabolism. In: Stouthamer, A.H. (eds) Quantitative Aspects of Growth and Metabolism of Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2446-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2446-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5079-1

  • Online ISBN: 978-94-011-2446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics