Skip to main content
  • 192 Accesses

Abstract

Living organisms do not just grow by synthesizing cellular components. As part of the necessary steps for existence, some components are degraded after synthesis. Even for bacteria in balanced, exponential growth some substances, under some conditions, are turned over. In other phases of growth turnover can be much more extensive, but it is still selective. This review covers studies with animals as a way to put the studies on microorganisms in perspective. The history, the mathematics, and experimental design of turnover experiments are reviewed. The important conclusion is that most of the proteins during balanced growth are very stable in bacteria, although ribosomal proteins are degraded under starvation conditions. Another generalization is that the process of wall enlargement in general is associated with obligatory turnover of the peptidoglycan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K & Watson JD (1989) Molecular Biology of the Cell. Garland Publishing, Inc, New York

    Google Scholar 

  • Alton TH & Koch AL (1974) Unused protein synthetic capacity of Escherichia coli grown in phosphate-limited chemostats. J. Mol. Biol. 86: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Borsook H & Keighley GL (1935) The ‘zcontinuing’ metabolism of nitrogen in animals. Proc. Roy. Soc. London Ser. B. 118: 488–521

    Article  CAS  Google Scholar 

  • Coffman RL, Norris TE & Koch AL (1971) Chain elongation rate of messenger and polypeptides in slowly growing Escherichia coli. J. Mol. Biol. 60: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Darnell J, Lodish H & Baltimore D (1990) Molecular Cell Biogy. Scientific American Books, New York

    Google Scholar 

  • Doyle RJ & Koch AL (1987) The functions of autolysins in the growth and division of Bacillus subtilis. Crit. Rev. Microbiol. 15: 169–222

    Article  PubMed  CAS  Google Scholar 

  • Hall BG (1988) Adaptive evolution that requires multiple spon-taneous mutations. 1. Mutations involving an insertion sequence. Genetics 120: 887–897

    PubMed  CAS  Google Scholar 

  • Hall BG (1990) Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126: 5–16

    PubMed  CAS  Google Scholar 

  • Hogness DS, Cohn M & Monod J (1955) Studies on the induced synthesis of β-galactosidase in Escherichia coli: the kinetics and mechanism of sulfur incorporation. Biochim. Biophys. Acta 16: 99–116

    Article  PubMed  CAS  Google Scholar 

  • King J (1980) In: Goldberg RF (Ed) Biological Regulation andDevelopment, Vol 2 (pp 101–132). Plenum, New York

    Google Scholar 

  • Koch AL (1962) The evaluation of the rates of biological processes from tracer kinetic data 1. The influence of labile metabolic pools. J. Theor. Biol. 3: 283–303

    Article  CAS  Google Scholar 

  • Koch AL (1968) The evaluation of the rates of biological processes from tracer kinetic data. II. RNA metabolism in growing bacteria. J. Theor. Biol. 18: 105–132

    Article  PubMed  CAS  Google Scholar 

  • Koch AL (1971a) Evaluation of the rates of biological processes from tracer kinetic data. III. The net synthesis lemma and exchangeable pools. J. Theor. Biol. 32: 429–450

    Article  PubMed  CAS  Google Scholar 

  • Koch AL (1971b) Evaluation of the biological processes from tracer kinetic data. IV. Digital simulation of nucleic acid metabolism in bacteria. J. Theor. Biol. 32: 451–469

    Article  PubMed  CAS  Google Scholar 

  • Koch AL (1979) Microbial growth in low concentrations of nutrients. In: Shilo M (Ed) Strategies in Microbial Life in Extreme Environments (p 261–279). Dahlem Konferenzen-1978, Berlin

    Google Scholar 

  • Koch AL, Higgins ML & Doyle RJ (1982) The role of surface stress in the morphology of microbes. J. Gen. Microbiol. 128: 927–945

    PubMed  CAS  Google Scholar 

  • Koch AL & Coffman R (1970) Diffusion, permeation, or enzyme limitation: A probe for the kinetics of enzyme induction. Biotech. and Bioeng. 12: 651–677

    Article  CAS  Google Scholar 

  • Koch AL & Deppe CS (1971) In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures. J. Mol. Biol. 55: 549–562

    Article  PubMed  CAS  Google Scholar 

  • Koch AL & Doyle RJ (1985) Inside-to-outside growth and the turnover of the Gram-positive rod. J. Theor. Biol. 117: 137–157

    Article  PubMed  CAS  Google Scholar 

  • Koch AL & Levy FIR (1955) Protein turnover in growing cultures of Escherichia coli. J. Biol. Chem. 217: 947–957

    PubMed  CAS  Google Scholar 

  • Lutkenhaus JF, Moore BA, Masters M & Donachie WD (1979) Individual proteins are synthesized continuously inthroughout the Escherichia coli cell cycle. J. Bacteriol. 138: 352–360

    PubMed  CAS  Google Scholar 

  • Mandelstam, J (1958) Turnover of protein in growing and non-growing populations of Escherichia coli. Biochemical J. 69: 110–119

    CAS  Google Scholar 

  • Mandelstam, J (1960) The intracellular turnover of protein and nucleic acid in its role in bacterial differentiation. Bacteriol. Rev. 24: 289–308

    PubMed  CAS  Google Scholar 

  • Matin A, Auger EA, Blum PH & Schultz JE (1989) Genetic starvation survival in nondiffcrentiating bacteria Ann. Rev. Microbiol. 43: 293–316

    Article  CAS  Google Scholar 

  • Monod J (1958) An outline of enzyme induction. Recueil Travaux Chim. Pays-bas. 7: 569–585

    Google Scholar 

  • Nath K & Koch AL (1971) Protein degradation in Escherichia co/i. II. Strain differences in the degradation of protein and nucleic acid resulting from starvation. J. Biol. Chem. 246: 6956–6967

    PubMed  CAS  Google Scholar 

  • Pine MJ (1972) Turnover of intracellular proteins. Ann Rev. Microbiol. 26: 103–125

    Article  CAS  Google Scholar 

  • Rotman B & Spiegelman S (1954) On the origin of the carbon in induced synthesis of β-galactosidase in Escherichia coli. J. Bacteriol. 68: 419–429

    PubMed  CAS  Google Scholar 

  • Samarel AM (1991) In vivo measurement of protein turnover during muscle growth and atrophy. FASEB J. 5: 2020–2028

    PubMed  CAS  Google Scholar 

  • Schoenheimer R (1942) The dynamic state of body constiuents. Cambridge

    Google Scholar 

  • Stragier P. Kunkel B, Kroos L & Losick R. (1989). Chromosomal rearrangement generating a composite gene fro a developmental transcription factor. Science 243: 507–512

    Article  PubMed  CAS  Google Scholar 

  • Zak R, Martin AF & Blough R (1979) Assessment of protein turnover by use of radioisotopic tracers. Physiol. Rev. 59: 407–447

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koch, A.L. (1992). Quantitative aspects of cellular turnover. In: Stouthamer, A.H. (eds) Quantitative Aspects of Growth and Metabolism of Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2446-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2446-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5079-1

  • Online ISBN: 978-94-011-2446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics