Skip to main content

Oscillator Configurations

  • Chapter
Principles of Free-Electron Lasers
  • 120 Accesses

Abstract

In the previous chapters it has been shown that an energetic electron beam propagating through an undulatory magnetic field is capable of amplifying electromagnetic radiation. That is, the combination of the beam and the undulatory field can be regarded as a medium with an inherent gain. The principal focus of the discussion in the previous chapters has been on the amplification of an injected signal with a specified frequency. However, the gain mechanism can also be used to form an oscillator by the feedback of a portion of the output signal. The radiation in an oscillator may be self-excited in the sense that radiation will grow spontaneously from noise in the oscillator if the gain the radiation experiences on traversing the interaction region exceeds the losses the radiation experiences on its return path to the input of the interaction region (including the portion of the radiation that is allowed to leave the oscillator as output). An oscillator mayaiso be mode-locked by the injection of a large-amplitude signal with a frequency within the gain band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colson, W. B. and Ride, S. K. (1980) The free-electron laser, Maxwell’s equations driven by single partide currents, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, Vol. 7 (ed. Jacobs, S. F., Pilloff, H. S., Sargent, M., Scully, M. O. and Spitzer, R.), Addison-Wesley, Reading, Massachusetts, p. 377.

    Google Scholar 

  2. Bogomolov, Ya. L., Bratman, V. L., Ginzburg, N. S., Petelin, M. J. and Yunakovsky, A. D. (1981) Nonstationary generation in free-electron lasers. Opt. Commun., 36, 209.

    Article  Google Scholar 

  3. Kroll, N. M., Morton, P. L. and Rosenbluth, M. N. (1981) Free-electron lasers with variable parameter wigglers. IEEE J. Quantum Electron., QE-17, 1436.

    Article  Google Scholar 

  4. Ginzburg, N. S. and Petelin, M. I. (1985) Multifrequency generation in free-electron lasers with quasi-optical resonators. Int. J. Electronics, 59, 291.

    Article  Google Scholar 

  5. Al-Abawi, H., Hopf, F. A., Moore, G. T. and Scully, M. O. (1979) Coherent transients in the free-electron laser: laser lethargy and coherence brightening. Optics Commun., 30, 235.

    Article  Google Scholar 

  6. Yu, S. S., Sharp, W. M., Fawley, W. M., Scharlemann, E. T., Sessler, A. M. and Sternbach, E. J. (1987) Waveguide suppression of the free-electron laser sideband instability. Nucl. Instr. Meth., A259, 219.

    Google Scholar 

  7. Colson, W. B. and Blau, J. (1988) Parameterizing physical effects in free-electron lasers. Nucl. Instr. Meth., A272, 386.

    Google Scholar 

  8. Levush, B. and Antonsen, T. M. Jr (1988) Regions of stability of free-electron laseroscillators. Nucl. lnstr. Meth., A272, 375.

    Article  Google Scholar 

  9. Colson, W. B. (1990) Classical free-electron laser theory, in The Laser Handbook: Free Electron Lasers, Vol. 6 (ed. Colson, W. B., Pellegrini, C. and Renieri, A.), North Holland, Amsterdam, p.115.

    Google Scholar 

  10. Pierce, J. R. (1950) Traueling Wave Tubes, Van Nostrand, New York.

    Google Scholar 

  11. Collin, R. E. (1966) Foundations For Microwave Engineering, McGraw-Hill, New vork.

    Google Scholar 

  12. Hopf, F. A., Meystre, P., Moore, G. T. and Scully, M. O. (1978) Nonlinear theory of free-electron devices, in Physics of Quantum Electronics: Nouel Sources oJ Coherent Radiation, Vol. 5 (ed. Jacobs, S. F., Sargent, M. and Scully, M. 0.), Addison-Wesley, Reading, Massachusetts, p. 41.

    Google Scholar 

  13. Colson, W. B. and Freedman, R. A. (1983) Synchrotron instability for long pulses in free-electron lasers. Opt. Commun., 46, 37.

    Article  Google Scholar 

  14. Colson, W. B. (1986) The trapped particle instability in free-electron laser oscillators and amplifiers. Nucl. Instr. Meth., A250, 168.

    Google Scholar 

  15. Antonsen, T M. Jr and Levush, B. (1989) Mode competition and suppression in free-electron laser oscillators. Phys. Fluids B, 1, 1097.

    Article  Google Scholar 

  16. Masud, J., Marshall, T.C., Schlesinger, S. P., Yee, F. G., Fawley, W. M., Scharlemann, E. T, Yu, S. S., Sessler, A. M. and Sternbach, E. J. (1987) Sideband control in a millimeter-wave free-electron laser. Phys. Rev. Lett., 58, 763.

    Article  Google Scholar 

  17. Warren, R. W., Goldstein, J. C. and Newnam, B. E. (1986) Spiking mode operation for a uniform-period wiggler. Nucl. Instr. Meth., A250, 19.

    Google Scholar 

  18. Warren, R. W., Sollid, J. E., Feldman, D. W., Stein, W. E., Johnson, W. J., Lumpkin, A. H. and Goldstein, J. C. (1989) Near-ideallasing with a uniform wiggler. Nucl.Instr. Meth., A285, 1.

    Google Scholar 

  19. Nusinovich, G. S. (1980) The mode interaction in free-electron lasers. Sov. Phys. Tech. Phys., 6, 848.

    Google Scholar 

  20. Stanford, E. R. and Antonsen, T. M. Jr (1991) The effect of dispersion on modecompetition in free-electron laser oscillators. Nucl. Instr. Meth., A304, 659.

    Google Scholar 

  21. Antonsen, T. M. Jr and Levush, B. L. (1989) Mode competition and control in free-electron laser oscillators. Phys. Rev. Lett., 62, 1488.

    Article  Google Scholar 

  22. Ginzburg, N. S., Kuznetsov, S. P. and Fedoseeva, T.M. (1978) Theory of transients in bckward wave tubes. Radiofiz., 21, 1037.

    Google Scholar 

  23. Sprangle, P., Tang, C. M. and Bernstein, I. B. (1983) Initiation of a pulsed beam free-electron laser. Phys. Rev. Lett., 50, 1775.

    Article  Google Scholar 

  24. Kim, K. J. (1986) An analysis of self amplified spontaneous emission. Nucl.l nstr. Meth., A250, 396.

    Article  Google Scholar 

  25. Becker, W., Gea-Banacloche, J. and Scully, M. O. (1986) Intrinsic linewidth of a free-electron laser. Phys. Rev. A, 33, 2174.

    Article  Google Scholar 

  26. Friedman, A., Gover, A., Kurizki, G., Ruschin, S. and Yariv, A. (1988) Spontaneous and stimulated emission from quasi-free electrons. Rev. Mod. Phys., 60, 471.

    Article  Google Scholar 

  27. Warren, R. W. and Goldstein, J. C. (1988) The generation and suppression of synchrotron sidebands. Nucl. Instr. Meth., A272, 155.

    Google Scholar 

  28. Elias, L. R., Hu, R. J. and Ramian, G. J. (1985) The UCSB electrostatic accelerator free-electron laser: first operation. Nucl. Instr. Meth., A237, 203.

    Google Scholar 

  29. Antonsen, T.M. Jr and Levush, B. (1990) Spectral characteristics of a free-electron laser with time-dependent beam energy. Phys Fluids B, 2, 2791.

    Article  Google Scholar 

  30. Liboff, R. L. (1969) Introduction to the Theory of Kinetic Equations, Wiley, New York.

    Google Scholar 

  31. Amir, A., Hu, R. J., Kielmann, F., Mertz, J. and Elias, L. R. (1988) Injection locking experiment at the UCSB free-electron laser. Nucl. Instr. Meth., A272, 174.

    Google Scholar 

  32. Elias, L. R., Ramian, G. J., Hu, J. and Amir, A. (1986) Observation of single mode operation in a free-electron laser. Phys. Rev. Lett., 57, 424.

    Article  Google Scholar 

  33. Danly, B. G., Evangelides, S. G., Chu, R., Tempkin, R. J., Ramian, G. J. and Hu, J. (1990) Direct spectral measurements of a quasi-cw free-electron laser. Phys. Rev. Lett., 65, 2251.

    Article  Google Scholar 

  34. Levush, B. and Antonsen, T.M. Jr(1989) Nonlinear mode competition and coherence in low gain free-electron laser oscillators. Nucl. lnstr. Meth., A285, 136.

    Article  Google Scholar 

  35. Kimmel, I. and Elias, L. R. (1988) Long-pulse free-electron lasers as sources of monochromatic radiation. Nucl. lnstr. Meth., A272, 368.

    Article  Google Scholar 

  36. Litvenenko, V. N. and Vinokurov, N. A. (1991) Lasing spectrum and temporal structure in storage ring free-electron lasers: theory and experiment. Nucl.lnstr. Meth., A304, 66.

    Article  Google Scholar 

  37. Dattoli, G. and Renieri, A. (1979) Classical multimode theory of the free-electron laser. Lett. Nuovo Cimento, 59B, 1.

    Google Scholar 

  38. Colson, W. B. (1982) Optical pulse evolution in the Stanford free-electron laser and in a tapered undulator, in Physics of Quantum Electronics: Free-Electron Generators oi Coherent Radiation, Vol. 8 (ed. Jacobs, S. F., Moore, G. T., Pilloff, H. S., Sargent, M., Scully, M. O. and Spitzer, R.), Addison-Wesley, Reading, Massachusetts, p. 457.

    Google Scholar 

  39. Dattoli, G., Hermsen, T., Renieri, A., Torre, A. and Gallardo, J. C. (1988) Lethargy of laser oscillations and supermodes in free-electron lasers: I. Phys. Rev. A, 37, 4326.

    Article  Google Scholar 

  40. Dattoli, G., Hermsen, T., Mezi, L., Renieri, A. and Torre, A. (1988) Lethargy of laser oscillations and supermodes in free-electron lasers: lI-quantitative analysis. Phys. Reu. A, 37, 4334.

    Article  Google Scholar 

  41. Goldstein, J. C., Newnam, B. E., Warren, R. W. and Sheffield, R. L. (1986) Comparison of the results of theoretical calculations with experimental measurements from the Los Alarnos free-electron laser oscillator experiment. Nucl. Instr. Meth., A250, 4.

    Google Scholar 

  42. Elleaume, P. (1985) Storage ring free-electron laser theory. Nucl. Instr. Meth., A237, 28.

    Google Scholar 

  43. Kroll, N. M. (1965) Excitation of hypersonic vibrations by means of photoelastic coupling of high intensity light waves to elastic waves. J. Appl. Phys. 36, 34.

    Article  Google Scholar 

  44. Pesme, D., Laval, G. and Pellat, R. (1973) Parametric instabilities in bounded plasmas. Phys. Reu. Lett., 31, 203.

    Article  Google Scholar 

  45. Renieri, A. (1979) Storage ring operation of a free-electron laser: the amplifier. Nuovo Cimento, 53B, 160.

    Google Scholar 

  46. Dattoli, G. and Renieri, A. (1980) Storage ring operation of a free-electron laser: the oscillator. Nuovo Cimento, 59B, 1.

    Google Scholar 

  47. Goldstein, J. C. (1984) Evolution of long pulses in a tapered wiggler free-electron laser, in Free-Electron Generators of Coherent Radiation (ed. Brau, C. A.. Jacobs, S. F. and Scully, M. 0.), Proc. SPIE 453, Bellingham, Washington, p. 2.

    Chapter  Google Scholar 

  48. Colson, W. B. and Richardson, J. L. (1983) Multimode theory of free-electron laser oscillators. Phys. Reu. Lett., 50, 1050.

    Article  Google Scholar 

  49. Goldstein, J. C., McVey, B. D., Carlsten, B. E. and Thode, L. E. (1989) Integrated numerical modeling of free-electron laser oscillators. Nucl. Instr. Meth., A285, 192.

    Google Scholar 

  50. Goldstein, J. C., McVey, B. D., Tokar, R. L., Elliot, C. J., Schmidt, M. J., Carlsten, B. E. and Thode, L. E. (1989) Simulation codes for modeling free-electron laser oscillators, in Modeling and Simulation of Laser Systems (ed. Bullock, D. L.), Proc. SPIE 142, Bellingham, Washington, p. 28.

    Chapter  Google Scholar 

  51. Riyopoulos, S., Sprangle, P., Tang, C. M. and Ting, A. (1988) Reflecting matrix for optical resonators in free-electron laser oscillators. Nucl. Instr. Meth., A272, 543.

    Google Scholar 

  52. Iracane, D. and Ferrer, J. L. (1990) An optical basis equation for solving the time-dependent Schrödinger equation: simulation of guiding and multifrequency mechanisms. Nucl. Instr. Meth., A296, 417.

    Google Scholar 

  53. Deacon, D. A. G. and Ortega, J. M. (1990) The storage ring free-electron laser, in The Laser Handbook: Free-Electron Lasers, Vol. 6 (ed. Colson, W. B., Pellegrini, C. and Renieri, A.), North Holland, Amsterdam, p. 345.

    Google Scholar 

  54. Madey, J. M. J. (1979) Relationship between mean radiated energy, mean squared radiated energy, and spontaneous power spectrum in apower series expansion of the equation of motion in a free-electron laser. Nuovo Cimento, 50B, 64.

    Google Scholar 

  55. Vedenov, A. A., Velikov, E. P. and Sagdeev, R. Z. (1961) Nonlinear oscillations of rarified plasma. Nucl. Fusion, 1, 82.

    Article  Google Scholar 

  56. Drummond, W. E. and Pines, D. (1962) Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl., 3, 1049.

    Google Scholar 

  57. Taguchi, T., Mima, K. and Mochizuki, T. (1981) Saturation mechanism and improvement of conversion efficiency of the free-electron laser. Phys. Rev. Lett., 46, 824.

    Article  Google Scholar 

  58. Ginzburg, N. S. and Shapiro, M. A. (1982) Quasilinear theory of multimode free-electron lasers with an inhomogeneous frequency broadening. Opt. Commun., 40,215.

    Article  Google Scholar 

  59. Edwards, D. A. and Syphers, M. J. (1989) An introduction to the physics of particle accelerators, in Physics of Particle Accelerators, Vol. 1 (ed. Month, M. and Dienes, M.), American Institute of Physics Conference Proceedings #184, New York, p. 2.

    Google Scholar 

  60. Vinokurov, N. A. and Skrinsky, A. N. (1979) Optical Range Klystron Oscillator using Ultrarelativistic electrons, Preprint 77-59 of the Institute of Nuclear Physics, Novosibirsk.

    Google Scholar 

  61. Vinokurov, N. A. and Skrinsky, A. N. (1977) On Ultimate Power of the Optical Klystron Installed on Electron Storage Ring, Preprint 77-67 of the Institute of Nuclear Physics, Novosibirsk.

    Google Scholar 

  62. Deacon, D. A. G. and Madey, J. M. J. (1980) Isochronous storage ring laser: a possible solution to the electron heating problem in recirculating free-electron lasers. Phys. Rev. Lett., 44, 449.

    Article  Google Scholar 

  63. Van Steenbergen, A. (1990) Accelerators and storage rings for free-electron lasers, in The Laser Handbook: Free-Electron Lasers, Vol. 6 (ed. Colson, W. B., Pellegrini, C. and Renieri, A.), North Holland, Amsterdam, p. 417.

    Google Scholar 

  64. Manheimer, W. M. and Dupree, T. H. (1968) Weak turbulence theory of velocity space diffusion and nonlinear Landau damping of waves. Phys. Fluids., 11, 2709.

    Article  Google Scholar 

  65. Krinsky, S., Wang, J. M. and Luchini, P. (1982) Madey’s gain spread theorem for the free-electron laser and the theory of stochastic processes. J. Appl. Phys., 53, 5453.

    Article  Google Scholar 

  66. Billardon, M., Elleaume, P., Ortega, J. M., Bazin, C., Bergher, M., Velghe, M., Petroff, Y, Deacon, D. A. G., Robinson, K. E. and Madey, J. M. J. (1983) First operation of astorage ring free-electron laser. Phys. Rev. Lett., 51, 1652.

    Article  Google Scholar 

  67. Elleaume, P. (1984) Macrotemporal structure of free-electron lasers. J. Phys., 45, 997.

    Article  Google Scholar 

  68. Elleaume, P. (1982) Optical klystron spontaneous emission and gain, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, Vol. 8 (ed. Jacobs, S. F., Moore, G. T., Pilloff, H. S., Sargent, M., Scully, M. O. and Spitzer, R.), Addison-Wesley, Reading, Massachusetts, p. 119.

    Google Scholar 

  69. Shih, C. C. and Caponi, M. Z. (1983) An optimized multicomponent wiggler design for a free-electron laser. IEEE J. Quantum Electron., QE-19, 369.

    Article  Google Scholar 

  70. Elleaume, P. (1990) Free-electron laser undulators, electron trajectories and spontaneous emission, in The Laser Handbook: Free-Electron Lasers, Vol. 6 (ed. Colson, W. B., Pellegrini, C. and Renieri, A.), North Holland, Amsterdam, p. 91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 H. P. Freund and T. M. Antonsen, Jr

About this chapter

Cite this chapter

Freund, H.P., Antonsen, T.M. (1992). Oscillator Configurations. In: Principles of Free-Electron Lasers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2316-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2316-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5023-4

  • Online ISBN: 978-94-011-2316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics