Skip to main content

Coherent Emission: Linear Theory

  • Chapter
Principles of Free-Electron Lasers
  • 120 Accesses

Abstract

In order to give rise to stimulated emission, it is necessary for the electron beam to respond in a collective manner to the radiation field and to form coherent bunches. This can occur when a light wave traverses an undulatory magnetic field such as a wiggler because the spatial variations of the wiggler and the electromagnetic wave combine to produce a beat wave, which is essentially an interference pattern. It is the interaction between the electrons and this beat wave which gives rise to the stimulated emission in free-electron lasers. In the case of a magnetostatic wiggler, this beat wave has the same frequency as the light wave, but its wavenumber is the sum of the wavenumbers of the electromagnetic and wiggler fields. As a result, the phase velocity of the beat wave is less than that of the electromagnetic wave and it is called a ponderomotive wave. Since the ponderomotive wave propagates at less than the speed of light in vacuo it can be in synchronism with electrons which are limited by that velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sukhatme, V. P. and Wolff, P. A. (1973) Stimulated Compton scattering as aradiation source — theoreticallimitations. J. Appl. Phys., 44, 2331.

    Google Scholar 

  2. Kwan, T. J. T., Dawson, J. M. and Lin, A. T. (1977) Free-electron laser. Phys. Fluids, 20, 581.

    Article  Google Scholar 

  3. Kroll, N. M. and McMullin, W. A. (1978) Stimulated emission from re1ativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A, 17, 300.

    Article  Google Scholar 

  4. Madey, J. M. J. (1979) Relationship between mean radiated energy, mean squared radiated energy and spontaneous power spectrum in apower series expansion of the equations of motion in a free-electron laser. Nuovo Cimento, 50B, 64.

    Google Scholar 

  5. Kwan, T. J. T. and Dawson, J. M. (1979) Investigation of the free-electron laser with a guide magnetic field. Phys. Fluids, 22, 1089.

    Article  Google Scholar 

  6. Bernstein, I. B. and Hirshfield, J. L. (1979) Amplification on a relativistic electronbeam in a spatially periodic transverse magnetic field. Phys. Rev. A, 20, 1661.

    Article  Google Scholar 

  7. Sprangle, P., Smith, R. A. and Granatstein, V. L. (1979) Free-electron lasers and stimulated scattering from relativistic electron beams, in Infrared and Millimeter Waves, Vol. 1 (ed. K. 1. Button), Academic Press, New York, p. 279.

    Google Scholar 

  8. Friedland, L. and Hirshfield, J. L. (1980) Free-electron laser with a strong axial magnetic field. Phys. Rev. Lett., 44, 1456.

    Article  Google Scholar 

  9. Freund, H. P., Sprangle, P., Dillenburg, D., da Jornada, E. H., Liberman, B. and Schneider, R. S. (1981) Coherent and incoherent radiation from free-electron lasers with an axial guide field. Phys. Rev. A, 24, 1965.

    Article  Google Scholar 

  10. Bernstein, B. and Friedland, L. (1981) Theory of ree-electron laser in combined helical pump and axial guide magnetic field. Phys. Rev. A, 23, 816.

    Article  Google Scholar 

  11. Gover, A. and Sprangle, P. (1981) A generalized formulation of free-electron lasers in the low-gain regime including transverse velocity spread and wiggler incoherence. J. Appl. Phys., 52, 599.

    Article  Google Scholar 

  12. Stenholm, S. T. and Bambini, A. (1981) Single-particle theory of the free-electron laser in a moving frame. IEEE J. Quantum Electron., QE-17, 1363.

    Article  Google Scholar 

  13. Shih, C. C. and Yariv, A. (1981) Inclusion of space-charge effects with Maxwell’s equations in the single-particle analysis of free-electron lasers. IEEE J. Quantum Electron., QE-17, 1387.

    Article  Google Scholar 

  14. Coisson, R. (1981) Energy loss calculation of gain in a plane sinusoidal free-electron laser. IEEE J. Quantum Electron., QE-17, 1409.

    Article  Google Scholar 

  15. Colson, W. B. (1981) The nonlinear wave equation for higher harmonics in free-electron lasers. IEEE J. Quantum Electron., QE-17, 1417.

    Article  Google Scholar 

  16. Kroll, N. M., Morton, P. L. and Rosenbluth, M. N. (1981) Free-electron lasers withvariable parameter wigglers. IEEE J. Quantum Electron., QE-17, 1436.

    Article  Google Scholar 

  17. Uhm, H. S. and Davidson, R. C. (1981) Free-electron laser instability for a relativistic annular electron beam in a helical wiggler field. Phys. Fluids, 24, 2348.

    Article  Google Scholar 

  18. Freund, H. P., Sprangle, P., Dillenburg, D., da Jornada, E. H., Schneider, R. S. and Liberman, B. (1982) Collective effects on the operation of free-electron lasers with an axial guide field. Phys. Rev. A, 26, 2004.

    Article  Google Scholar 

  19. Davies, J. A., Davidson, R. C. and Johnston, G. L. (1985) Compton and Raman free-electron laser stability properties for a cold electron beam propagating through a helical magnetic field. J. Plasma Phys., 33, 387.

    Article  Google Scholar 

  20. Grover, L. K. and Pantell, R. H. (1985) Simplified analysis of free-electron lasers using Madey’s theorem. IEEE J. Quantum Electron., QE-21, 944.

    Article  Google Scholar 

  21. Ibanez, L. F. and Johnston, S. (1983) Finite-temperature effects in free-electron lasers. IEEE J. Quantum Electron., QE-19, 339.

    Article  Google Scholar 

  22. Jerby, E. and Gover, A. (1985) Investigation of the gain regimes and gain parameters of the free-electron laser dispersion equations. IEEE J. Quantum Electron., QE-21, 1041.

    Article  Google Scholar 

  23. Freund, H. P., Davidson, R. C. and Kirkpatrick, D. A. (1991) Thermal effects on the linear gain in free-electron lasers. IEEE J. Quantum Electron., QE-27, 2550.

    Article  Google Scholar 

  24. Friedland, L. and Fruchtman, A. (1982) Amplification on relativistic electron beams in combined helical and axial magnetic fields. Phys. Rev. A, 25, 2693.

    Article  Google Scholar 

  25. Uhm, H. S. and Davidson, R. C. (1982) Helically distorted relativistic beam equilibria for free-electron laser applications. J. Appl. Phys., 53, 2910.

    Article  Google Scholar 

  26. McMullin, W. A. and Davidson, R. C. (1982) Low-gain free-electron laser near cyclotron resonance. Phys. Rev. A, 25, 3130.

    Article  Google Scholar 

  27. Uhm, H. S. and Davidson, R. C. (1983) Free-electron laser instability for a relativistic solid electron beam in a helical wiggler field. Phys. Fluids, 26, 288.

    Article  Google Scholar 

  28. Freund, H. P. and Sprangle, P. (1983) Unstable electrostatic beam modes in free-electron laser systems. Phys. Rev. A, 28, 1835.

    Article  Google Scholar 

  29. Grebogi, C. and Uhm, H. S. (1986) Vlasov susceptibility of relativistic magnetized plasma and application to free-electron lasers. Phys. Fluids, 29, 1748.

    Article  Google Scholar 

  30. Ginzburg, N. S. (1987) Diamagnetic and paramagnetic effects in free-electron lasers. IEEE Trans. Plasma Sci., PS-15, 411.

    Article  Google Scholar 

  31. Freund, H. P., Davidson, R. C. and Johnston, G. L. (1990) Linear theory of the collective Raman interaction in a free-.electron laser with a planar wiggler and an axial guide field. Phys. Fluids B, 2,427.

    Article  Google Scholar 

  32. Cary, J. R. and Kwan, T. J. T. (1981) Theory of off-axis mode production by free-electron lasers. Phys. Fluids, 24, 729.

    Article  Google Scholar 

  33. Kwan, T. J. T. and Cary, J. R. (1981) Absolute and convective instabilities in two dimensional free-electron lasers. Phys. Fluids, 24, 899.

    Article  Google Scholar 

  34. Freund, H. P., Johnston, S. and Sprangle, P. (1983) Three-dimensional theory of free-electron lasers with an axial guide field. IEEE J. Quantum Electron., QE-19, 322.

    Article  Google Scholar 

  35. Freund, H. P. and Ganguly, A. K. (1983) Three-dimensional theory of the free-electron laser in the collective regime. Phys. Rev. A, 28, 3438.

    Article  Google Scholar 

  36. Luchini, P. and Solimeno, S. (1985) Gain and mode-coupling in a three-dimensional free-electron laser: a generalization of Madey’s theorem. IEEE J. Quantum Electron., QE-21,952.

    Article  Google Scholar 

  37. Rosenbluth, M. N. (1985) Two-dimensional effects in free-electron lasers. IEEE J. Quantum Electron., QE-21, 966.

    Article  Google Scholar 

  38. Steinberg, B. Z., Gover, A. and Ruschin, S. (1987) Three-dimensional theory of free-electron lasers in the collective regime. Phys. Rev. A, 36, 147.

    Article  Google Scholar 

  39. Elliot, C. J. and Schmitt, M. J. (1987) Small-signal gain for a plan ar free-electron laser with aperiod magnetic field. IEEE Trans. Plasma Sci., PS-15, 319.

    Article  Google Scholar 

  40. Fruchtman, A. (1988) High-density thick beam free-electron laser. Phys. Rev. A, 37,4259.

    Article  Google Scholar 

  41. Antonsen, T. M. and Latham, P. E. (1988) Linear theory of a sheet beam free-electron laser. Phys. Fluids, 31, 3379.

    Article  Google Scholar 

  42. Tripathi, V. K. and Liu, C. S. (1989) A slow wave free-electron laser. IEEE Trans. Plasma Sci., PS-17, 583.

    Article  Google Scholar 

  43. Fruchtman, A. and Weitzner, H. (1989) Raman free-electron laser with transverse density gradients. Phys. Rev. A, 39, 658.

    Article  Google Scholar 

  44. Yu, L. H., Krinsky, S. and Gluckstern, R. L. (1990) Calculation of universal scaling function for free-electron laser gain. Phys. Rev. Lett., 64, 3011.

    Article  Google Scholar 

  45. Masud, J., Marshall, T. C., Schlesinger, S. P., Yee, F. G., Famley, W. M., Scharlemann, E. T., Yu, S. S., Sessler, A. M and Sternbach, E. J. (1987) Sideband control in a millimeter-wave free-electron laser. Phys. Rev. Lett., 58, 763.

    Article  Google Scholar 

  46. Fajans, J. and Bekefi, G. (1986) Measurement of amplification and phase-shift in a free electron laser. Phys. Fluids, 29, 3461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 H. P. Freund and T. M. Antonsen, Jr

About this chapter

Cite this chapter

Freund, H.P., Antonsen, T.M. (1992). Coherent Emission: Linear Theory. In: Principles of Free-Electron Lasers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2316-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2316-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5023-4

  • Online ISBN: 978-94-011-2316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics