Skip to main content

Large-Amplitude Oscillatory Shear

  • Chapter
Techniques in Rheological Measurement

Abstract

Although linear viscoelastic properties can be measured in many ways, the small-amplitude oscillatory shear test is the most widely used method. Nonlinear viscoelastic properties can also be measured in many ways, but no predominant test method has emerged amongst experimentalists. Whereas there is a unifying theory that describes linear behavior, there is no unifying constitutive theory for nonlinear viscoelasticity. For this reason, each nonlinear test reveals a different aspect of a material’s behavior. Hence, experimentalists have designed various transient experiments to capture different features of nonlinear viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd Ed., John Wiley & Sons, New York, 1980.

    Google Scholar 

  2. J. A. Kornfeld, G. G Fuller and D. S. Pearson, Rheol. Acta, 1990, 29, 105.

    Article  Google Scholar 

  3. J. L. Schrag, Trans. Soc. Rheol., 1977, 21(3), 399.

    Article  Google Scholar 

  4. R. Darby, Viscoelastic Fluids: An Introduction to Their Properties and Behavior, Marcel Dekker, Inc., New York, 1976, p. 251.

    Google Scholar 

  5. B. H. Shah and R. Darby, Polym. Eng. Sci., January 1976, 16(1), 46.

    Article  CAS  Google Scholar 

  6. R. A. Schapery and D. E. Cantey, AIAA J., February 1966, 4(2), 255–64.

    Article  Google Scholar 

  7. W. C. MacSporran and R. P. Spiers, Rheol. Acta, 1984, 23, 90.

    Article  Google Scholar 

  8. D. S. Pearson and W. E. Rochefort, J. Polym. Sci.: Pol. Phys. Ed., 1982, 20, 83.

    Article  CAS  Google Scholar 

  9. R. L. Powell and W. H. Schwarz, J. Polym. Sci.: Pol. Phys. Ed., 1979, 17, 969.

    Article  CAS  Google Scholar 

  10. R. L. Powell and W. H. Schwarz, J. Rheol., 1979, 23(3), 323.

    Article  CAS  Google Scholar 

  11. R. P. Spiers, PhD Thesis, University of Bradford, 1977.

    Google Scholar 

  12. S. Onogi, T. Masuda and T. Matsumoto, Trans. Soc. Rheol., 1970, 14(2), 275.

    Article  CAS  Google Scholar 

  13. T. Matsumoto, Y. Segawa, Y. Warashina and S. Onogi, Trans. Soc. Rheol., 1973, 17(1), 47.

    Article  CAS  Google Scholar 

  14. S. Onogi and T. Matsumoto, Polym. Eng. Revs, 1981, I(1), 45.

    Google Scholar 

  15. T.-T. Tee and J. M. Dealy, Trans. Soc. Rheol., 1975, 19(4), 595.

    Article  CAS  Google Scholar 

  16. J. M. Dealy, J. F. Petersen and T.-T. Tee, Rheol. Acta, 1973, 12, 550.

    Article  CAS  Google Scholar 

  17. R. V. McCarthy, J. Rheol., 1978, 22(6), 623.

    Article  CAS  Google Scholar 

  18. A. T. Tsai and D. S. Soong, J. Rheol., 1985, 29(1), 1.

    Article  CAS  Google Scholar 

  19. G. E. Hibberd, W. J. Wallace and K. A. Wyatt, J. Sci. Instrum., February 1966, 43, 84.

    Article  CAS  Google Scholar 

  20. G. E. Hibberd and N. S. Parker, Cereal Chem., 1975, 52(3-II), 1r.

    Google Scholar 

  21. J. M. Dealy and A. J. Giacomin, Rheological Measurement, Ch. 12, A. A. Collyer and D. W. Clegg (eds), Elsevier Applied Science, London, 1988.

    Google Scholar 

  22. T. Y. Liu, D. W. Mead, D. S. Soong and M. C. Williams, Rheol. Acta, 1983, 22, 81.

    Article  CAS  Google Scholar 

  23. T. Y. Liu, D. S. Soong and M. C. Williams, J. Polym. Sci.: Pol. Phys. Ed., 1984, 2, 1561.

    Article  Google Scholar 

  24. N. Sivashinsky, A. T. Tsai, T. J. Moon and D. S. Soong, J. Rheol., 1984, 28(3), 287.

    Article  CAS  Google Scholar 

  25. J. M. Dealy, US Patent No. 4 464 928, August 14, 1984.

    Google Scholar 

  26. A. J. Giacomin, T. Samurkas and J. M. Dealy, Polym. Eng. Sci., April 1989, 29, 499.

    Article  CAS  Google Scholar 

  27. A. J. Giacomin and J. M. Dealy, Paper G3, 58th Annual Meeting Soc. Rheol. Tulsa, OK, USA, October, 1986.

    Google Scholar 

  28. A. J. Giacomin, A Sliding Plate Melt Rheometer Incorporating a Shear Stress Transducer, Doctoral Dissertation, Dept. of Chemical Engineering, McGill University, Montreal, Canada, June 1987.

    Google Scholar 

  29. W. Philippoff, Trans. Soc. Rheol., 1966, 10(1), 317.

    Article  CAS  Google Scholar 

  30. K. Walters and T. E. R. Jones, Proc. 5th Int. Cong. Rheol., Vol. 4, S. Ohogi (ed), University of Tokyo Press, Tokyo, 1970, p. 337.

    Google Scholar 

  31. J. Harris and K. Bogie, Rheol. Acta, 1967, 6(1), 3.

    Article  CAS  Google Scholar 

  32. P. J. Cain, Bull. No. 300014-56 170.70-02, MTS Systems Corp., Eden Prairie, Minnesota, 1986.

    Google Scholar 

  33. D. O. Stalnaker and T. S. Fleischman, Closed Loop, 14(2), MTS Systems Corp., Eden Prairie, Minnesota, 1985, p. 4.

    Google Scholar 

  34. I. F. MacDonald, B. D. Marsh and E. Ashare, Chem. Eng. Sci., 1969, 24, 1615.

    Article  CAS  Google Scholar 

  35. G. B. Thurston, J. Non-Newtonian Fluid Mech., 1981, 9, 57.

    Article  CAS  Google Scholar 

  36. G. B. Thurston and G. A. Pope, J. Non-Newtonian Fluid Mech., 1981, 9, 69.

    Article  CAS  Google Scholar 

  37. R. Heinrich, pers. comm.

    Google Scholar 

  38. S. G. Hatzikiriakos and J. M. Dealy, J. Rheol., 1991, 35(4), 497.

    Article  CAS  Google Scholar 

  39. E. Helfand and D. S. Pearson, J. Polym. Sci.: Polym. Phys. Ed., 1982, 20, 1249.

    Article  CAS  Google Scholar 

  40. H.-C. Yen and L. V. McIntire, Trans. Soc. Rheol., 1972, 16(4), 711.

    Article  CAS  Google Scholar 

  41. D. Acierno, F. P. La Mantia, G. Marrucci and G. Titomanlio, J. Non-Newtonian Fluid Mech., 1976, 1, 147.

    Article  CAS  Google Scholar 

  42. W. K.-W. Tsang and J. M. Dealy, J. Non-Newtonian Fluid Mech., 1981, 9, 203.

    Article  CAS  Google Scholar 

  43. N. Phan-Thien, J. Rheol., 1978, 22, 259.

    Article  CAS  Google Scholar 

  44. I. F. MacDonald, Rheol. Acta, 1975, 14, 801.

    Article  CAS  Google Scholar 

  45. I. F. MacDonald, Rheol. Acta, 1975, 14, 906.

    Article  CAS  Google Scholar 

  46. X.-J. Fan and R. B. Bird, J. Non-Newtonian Fluid Mech., 1984, 15, 341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giacomin, A.J., Dealy, J.M. (1993). Large-Amplitude Oscillatory Shear. In: Collyer, A.A. (eds) Techniques in Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2114-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2114-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4937-5

  • Online ISBN: 978-94-011-2114-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics