Skip to main content

Cross-Sectional Scanning Tunneling Microscopy of GaAs Doping Superlattices: Pinned vs. Unpinned Surfaces

  • Chapter
Semiconductor Interfaces at the Sub-Nanometer Scale

Part of the book series: NATO ASI Series ((NSSE,volume 243))

Abstract

The scanning tunneling microscope (STM) is used to study GaAs pn-doping superlattices, cleaved in ultrahigh vacuum and imaged in cross-section. A comparison is made between results obtained on flat, unpinned surfaces and those from rough, pinned surfaces. In both cases, spectroscopic measurements are used to determine the position of the surface Fermi-level relative to the band edges. Band bending in the GaAs induced by the electric-field from the probe-tip is found to have a significant effect on the spectra, although this effect is diminished on the pinned surfaces thereby simplifying the interpretation of those results. Several other features in the data are discussed in detail, including disorder-induced gap states, and restricted current flow in the bulk GaAs due to the pn-doping structure

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Muralt, Appl. Phys. Lett. 49, 1441 (1986)

    Article  CAS  Google Scholar 

  2. P. Murait, H. Meier, D. W. Pohl, and H. W. M. Salemink, Appl. Phys. Lett. 50, 1352 (1987)

    Article  Google Scholar 

  3. S. Hosaka, S. Hosoki, K. Takata, K. Horiuchi, and N. Natsuaki, Appl. Phys. Lett. 53, 487 (1988)

    Article  CAS  Google Scholar 

  4. F. Osaka, I. Tanaka, T. Kato, and Y. Katayama, Jap. J. Appl. Phys. 27, L1193 (1988)

    Article  CAS  Google Scholar 

  5. S. Kordić, E. J. van Loenen, D. Dijkkamp, A. J. Hoeven, and H. K. Moraal, J. Vac. Sci. Technol. A 8, 549 (1990)

    Google Scholar 

  6. M. Tanimoto, and Y. Nakano, J. Vac. Sci. Technol. A 8, 553 (1990)

    Google Scholar 

  7. O. Albrektsen, D. J. Arent, H. P. Meier, and H. W. M. Salemink, Appl. Phys. Lett. 57, 31 (1990)

    Article  CAS  Google Scholar 

  8. M. B. Johnson and J.-M. Halbout, J. Vac. Sci. Technol. B 10, 508 (1992)

    Google Scholar 

  9. H. W. M. Salemink, O. Albrektsen, and P. Koenraad, Phys. Rev. B45, 6946 (1992)

    Google Scholar 

  10. H. W. M. Salemink and O. Albrektsen, J. Vac. Sci Technol. B 10, 1799 (1992)

    Google Scholar 

  11. E. T. Yu, M. B. Johnson, and J.-M. Halbout, Appl. Phys. Lett. 61, 201 (1992)

    Article  CAS  Google Scholar 

  12. R. M. Feenstra, E. T. Yu, J. M. Woodall, P. D. Kirchner, C. L. Lin, and G. D. Pettit, Appl. Phys. Lett. 61, 795 (1992)

    Article  CAS  Google Scholar 

  13. S. Gwo, A. R. Smith, C. K. Shih, K. Sadra, and B. G. Streetman, Appl. Phys. Lett. 61, 1104 (1992)

    Article  CAS  Google Scholar 

  14. J. R. Chelikowsky and M. L. Cohen, Solid State Comm. 29, 267 (1979)

    Article  CAS  Google Scholar 

  15. R. M. Feenstra and J. A. Stroscio, J. Vac. Sci. Technol. B 5, 923 (1987)

    Google Scholar 

  16. J. A. Stroscio and R. M. Feenstra, J. Vac. Sci. Technol. B 6, 1472 (1988)

    Google Scholar 

  17. R. M. Feenstra, Proceedings of the 21th International Conference on the Physics of Semiconductors, eds. X. Xie and K. Huang (World Scientific, Singapore, 1993), to be published

    Google Scholar 

  18. P. MÃ¥rtensson and R. M. Feenstra, Phys. Rev. B 39, 7744 (1988)

    Google Scholar 

  19. For the present study, it is assumed that all the Si dopant atoms are incorporated as donors in GaAs. Additional studies indicate that this is indeed the case, for Si densities at least up to 3 × 1019cm-3 (P. D. Kirchner, A. Vaterlaus, R. M. Feenstra, C. L. Lin, G. D. Pettit, and J. M. Woodall, to be published)

    Google Scholar 

  20. For a review, see R. M. Feenstra, Appl. Surf. Sci. 56–58, 104 (1992)

    Article  Google Scholar 

  21. W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. W. Chye, Phys. Rev. Lett. 44, 420 (1980); J. Vac. Sci. Technol. 16, 1422 (1979)

    Article  CAS  Google Scholar 

  22. With sufficiently large dynamic range in the tunnel current, band gaps observed by STM are typically within 0.1–0.2 eV of the bulk GaAs gap of 1.43 eV (see [20] for examples). For highly degenerate material, the observed gaps fall on the low end of this range

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feenstra, R.M. et al. (1993). Cross-Sectional Scanning Tunneling Microscopy of GaAs Doping Superlattices: Pinned vs. Unpinned Surfaces. In: Salemink, H.W.M., Pashley, M.D. (eds) Semiconductor Interfaces at the Sub-Nanometer Scale. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2034-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2034-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4900-9

  • Online ISBN: 978-94-011-2034-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics