Skip to main content

Prebiotic Synthesis in Planetary Environments

  • Chapter
The Chemistry of Life’s Origins

Part of the book series: NATO ASI Series ((ASIC,volume 416))

Abstract

Except for major short-term perturbations in surface environments caused by a declining flux of impactors, equable conditions for prebiotic evolution could have existed as early as 4.4 billion years ago. Giant impacts undoubtedly constrained the timing of life’s origin, but quantitative statements about when the clock was set awaits stronger consensus on impactor fluxes and more refined theoretical models. Organic matter surviving impacts or synthesized in impacts would have augmented the inventory of compounds produced endogenously in surface environments. The oxidation state of the prebiotic atmosphere remains controversial, but little question exists about the reduced state of the early ocean, which may have provided a more productive medium for prebiotic synthesis than the atmosphere. If the atmosphere has been only mildly reducing since the end of the major epoch of accretion at ~4.4 Ga, the apparent lack of strong atmospheric sources for hydrogen cyanide, formaldehyde and ammonia poses a serious challenge for theories of prebiotic evolution which require these key chemical intermediates. Submarine hydrothermal systems and the wind mixed layer of the ocean are specific settings which may have favored prebiotic evolution. Especially interesting is the ocean-atmosphere interface where a complex set of physical and chemical processes operated continuously: collection of gas, aerosols and dust from the atmosphere; recycling of organic and inorganic solutes between the ocean and atmosphere through bubble formation and bursting; organic synthesis by UV radiation, cavitation and other energy sources; and formation, dissipation and reformation of surface active monolayers and bilayer vesicles. The intersection of the wind mixed ocean layer with shorelines of volcanic platforms and shallow marine hydrothermal systems may have been key sites for prebiotic evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, Y. and Matsui, T. (1988) Evolution of an impact-generated H2O-CO2 atmosphere and formation of a hot proto-ocean on Earth. J. Atmos. Sci. 45, 3081–3101.

    Article  Google Scholar 

  • Åkermark, B., Eklund-Westlin, U. Baecktroem, P., and Loef, R. (1980) Photochemical, metalpromoted reduction of carbon dioxide and formaldehyde in aqueous solution. Acta Chem. Scand. B34, 27–30.

    Article  Google Scholar 

  • Allegre, C.J., Staudacher, T. and Sarda, P. (1987) Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sei. Lett. 81, 127–150.

    Article  CAS  Google Scholar 

  • Alvarez, W., Asaro, F. and Montanari, A. (1980) Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy) Science 250, 1700–1702.

    Article  Google Scholar 

  • Anbar, M. (1968) Cavitation during impact of liquid water on water: Geochemical implications.Science 161, 1343–1344.

    Article  PubMed  CAS  Google Scholar 

  • Anders, A. (1989) Pre-biotic organic matter from comets and asteroids. Nature 342, 255–256.

    Article  PubMed  CAS  Google Scholar 

  • Anders, E. and Owen, T. (1977) Mars and Earth: origin and abundance of volatiles. Science 198, 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Arculus, R.J. and Delano, J.W. (1980) Implications for the primitive atmosphere of the oxidation state of Earth’s upper mantle. Nature 288, 72–74.

    Article  CAS  Google Scholar 

  • Arculus, R.J. and Delano, J.W. (1981) Intrinsic oxygen fugacity measurements: techniques and results for spinels from upper mantle peridotites and megacryst assemblages. Geochim. Cosmochim. Acta 45, 899–913.

    Article  CAS  Google Scholar 

  • Arrhenius, G. (1952) Sediment cores from the East Pacific. I. Properties of the sediment and their distribution. Reports of the Swedish Deep-Sea Exp[edition 1947–1948. 5, 5–91.

    CAS  Google Scholar 

  • Arrhenius, G., De, B.R. and Alfven, H. (1974) Origin of the ocean, in E.D. Goldberg (ed.), The Sea Volume 5, John Wiley and Sons, New York, pp. 839–861.

    Google Scholar 

  • Arrhenius, G. (1986) Dysoxic environments as models for primordial mineralisation, in A.G. Cairns-Smith, A.G. and H. Hartman, H. (eds.), Clay Minerals and the Origin of Life, Cambridge University Press, Cambridge, UK, pp. 97–104

    Google Scholar 

  • Bada, J.L. and Miller, S.L. (1968) Ammonium ion concentration in the primitive ocean. Science 159, 423–425.

    Article  PubMed  CAS  Google Scholar 

  • Baker, E.T. and Massoth, G.J. (1985) Hydrothermal particle plumes over the southern Juan de Fuca Ridge. Nature 316, 342–344.

    Article  CAS  Google Scholar 

  • Barak, I. and Bar-Nun, A. (1975) The mechanisms of amino acids synthesis by high temperature shock-waves. Origins of Life 6, 483–506.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Nun, A. and Shaviv, A. (1975) Dynamics of the chemical evolution of Earth’s primitive atmosphere. Icarus 24, 197–210.

    Article  CAS  Google Scholar 

  • Bar-Nun, A. and Chang, S. (1983) Photochemical reactions of water and carbon monoxide in Earth’s primitive atmosphere. J. Geophys. Res. 88, 6662–6672.

    Article  CAS  Google Scholar 

  • Barley, M.E., Dunlop, J.S.R., Glover, J.E., and Groves, D.I. (1979) Sedimentary evidence for an Archaean shallow-water volcanic-sedimentary fades, eastern Pilbara Block, Western Australia. Earth Planet. Sci. Lett. 43 74–84.

    Article  Google Scholar 

  • Benlow, A. and Meadows, A.J. (1977) The formation of the atmospheres of the terrestrial planets by impact. Astrophys. Space Sci. 46, 293–300.

    Article  CAS  Google Scholar 

  • Berg, W.W.Jr. and Winchester, J.W. (1978) Aerosol chemistry of the marine atmosphere, in J.P.Riley and R. Chester, (eds.), Chemical Oceanography 7, Academic Press, London, pp. 173–231.

    Google Scholar 

  • Bloechl, E., Keller, M., Waecterhaeuser, G. and Stetter, K.O. (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc. Nat. Acad. Sci. U.S.A. 89, 8117–8120.

    Article  CAS  Google Scholar 

  • Boettcher, A.L., Mysen, B.O. and Modreski, P.J. (1975) Melting in the mantle: phase relationships in natural and synthetic peridotite-H2O and peridotite-H2O-CO2 systems at high pressures, in L.H. Ahrens, J.B. Dawson, A.R. Duncan, and A.J. Erlank (eds.), Physics and Chemistry of the Earth, Pergamon Press, Oxford, pp. 855–867.

    Google Scholar 

  • Borowska, Z.K. and Mauzerall, D.C. (1987) Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. Origins of Life 17, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Borowska, Z.K. and Mauzerall, D.C. (1988) Photoreduction of carbon dioxide by aqueous ferrous ion: An alternative to the strongly reducing atmosphere for the chemical origin of life. Proc. Nat. Acad. Sci. USA 85, 6577–6580.

    Article  PubMed  CAS  Google Scholar 

  • Borowska, Z.K. and Mauzerall, D.C (1991) Corrections and retractions. Proc. Nat. Acad. Sci. U.S.A. 88 4564.

    Article  CAS  Google Scholar 

  • Braterman, P.S., Cairns-Smith, A.G. and Sloper, R.W. (1983) Photo-oxidation of hydrated Fe2+ significance for banded iron formations. Nature 303,163–164.

    Article  CAS  Google Scholar 

  • Buick, R. and Dunlop, J.S.R. (1990) Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277.

    Article  Google Scholar 

  • Canuto, V.M., Levine, J.S., Augustsson, T.R. and Imhoff, C.L. (1982) UV radiation from the young Sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature 296, 816–820.

    Article  CAS  Google Scholar 

  • Chameides, W.L. and Walker, J.C.G. (1981) Rates of fixation by lightning of carbon nitrogen in possible primitive atmospheres. Origin of Life 11, 291–302.

    Article  CAS  Google Scholar 

  • Chameides, W.L. and Davis, D.D. (1983) Aqueous-phase source of formic acid in clouds. Nature 304, 427–42.

    Article  CAS  Google Scholar 

  • Chang, S. (1979) Comets: cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life, in M. Neugebauer, D.K. Yeomans, and J.C. Brandt (eds.), in Space Missions to Comets, NASA Conference Publication 2089, NASA Scientific and Technical Information Division, Washington, DC, pp. 59–111.

    Google Scholar 

  • Chang, S. (1988) Planetary environments and the conditions of life. Phil. Trans. Roy. Soc. (London A) 325, 601–610.

    Article  CAS  Google Scholar 

  • Chang, S., DesMarais, D., Mack, R., Miller, S.L. and Strathearn, G.E. (1983) Prebiotic organic synthesis and the origin of life, in J.W. Schopf (ed.), Earth’s Earliest Biosphere, Princeton University Press, Princeton, New Jersey, pp. 53–92.

    Google Scholar 

  • springs on the East Pacific Rise and their effluent dispersal. Nature 297, 187–191.

    Google Scholar 

  • Egami, F. (1974) Minor elements and evolution. J. Mol. Evol. 4, 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Feely, R.A., Massoth, G.J., Baker, E.T., Cowen, J.P., Lamb, M.F. and Krogslund, K.A. (1990 The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet. Sci. Lett. 96, 305–318.

    Article  CAS  Google Scholar 

  • Fegley, B., Jr., Prinn, R.G., Hartman, H. and Watkins, G. (1986) Chemical effects of large impacts on the Earth’s primitive atmosphere. Nature, 319, 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, J.P. and Nicodem, D.E. (1972) Ammonia photolysis and the role of ammonia in chemical evolution. Nature 238, 268–269.

    Article  CAS  Google Scholar 

  • Flegmann, A.W. and Tattersall, R. (1979) Energetics of peptide bond formation at elevated temperatures. J. Mole. Evol. 12, 349–355.

    Article  CAS  Google Scholar 

  • Flint, E.B. and Suslick, K.S. (1991) The temperature of cavitation. Science 253, 1397–1399.

    Article  PubMed  CAS  Google Scholar 

  • Folsome, C.E., Brittain, A., Smith, A., and Chang, S. (1981) Hydrazines and carbohydrazides produced from oxidized carbon in Earth’s primitive environment. Nature 294, 64–65.

    Article  CAS  Google Scholar 

  • Garrett, W.D. (1967) The organic chemical composition of the ocean surface. Deep Sea Res. 14, 221–227.

    CAS  Google Scholar 

  • Getoff, N.G., Scholes, G. and Weiss, J. (1960) Reduction of carbon dioxide in aqueous solution under the influence of radiation. Tetrahedron Lett. 1960, 17–23.

    Article  Google Scholar 

  • Groves, D.I., Dunlop, J.S.R., and Buick, R. (1981) An early habitat of life. Scientific Amer. 245, 64–73.

    Article  Google Scholar 

  • Halmann, M. and Aurian-Blajeni, B. (1981) Photoassisted carbon dioxide reduction and formation of two-and three-carbon compounds, in Y. Wolman (ed.) Origins of Life, D. Reidel Publishing Company, Dordrecht, pp. 143–150.

    Chapter  Google Scholar 

  • Hartman, H. (1975) Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4, 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, W.K. and Davis, D.R. (1975) Satellite sized planetesimals and lunar origin. Icarus 24, 504–515.

    Article  Google Scholar 

  • Hedges, J.I. and Hare, P.E. (1987) Amino acid adsorption by clay minerals in distilled water. Geochim. Cosmochim. Acta 51, 255–259.

    Article  CAS  Google Scholar 

  • Henderson-Sellers, A. and Henderson-Sellers, B. (1988) Equable climate in the early Archaean. Nature 336, 117–118.

    Article  Google Scholar 

  • springs on the East Pacific Rise and their effluent dispersal. Nature 297, 187–191.

    Google Scholar 

  • Egami, F. (1974) Minor elements and evolution. J. Mol. Evol. 4, 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Feely, R.A., Massoth, G.J., Baker, E.T., Cowen, J.P., Lamb, M.F. and Krogslund, K.A. (1990 The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet. Sci. Lett. 96, 305–318.

    Article  CAS  Google Scholar 

  • Fegley, B., Jr., Prinn, R.G., Hartman, H. and Watkins, G. (1986) Chemical effects of large impacts on the Earth’s primitive atmosphere. Nature, 319, 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, J.P. and Nicodem, D.E. (1972) Ammonia photolysis and the role of ammonia in chemical evolution. Nature 238, 268–269.

    Article  CAS  Google Scholar 

  • Flegmann, A.W. and Tattersall, R. (1979) Energetics of peptide bond formation at elevated temperatures. J. Mole. Evol. 12, 349–355.

    Article  CAS  Google Scholar 

  • Flint, E.B. and Suslick, K.S. (1991) The temperature of cavitation. Science 253, 1397–1399.

    Article  PubMed  CAS  Google Scholar 

  • Folsome, C.E., Brittain, A., Smith, A., and Chang, S. (1981) Hydrazines and carbohydrazides produced from oxidized carbon in Earth’s primitive environment. Nature 294, 64–65.

    Article  CAS  Google Scholar 

  • Garrett, W.D. (1967) The organic chemical composition of the ocean surface. Deep Sea Res. 14,221–227.

    CAS  Google Scholar 

  • Getoff, N.G., Scholes, G. and Weiss, J. (1960) Reduction of carbon dioxide in aqueous solution under the influence of radiation. Tetrahedron Lett. 1960, 17–23.

    Article  Google Scholar 

  • Groves, D.I., Dunlop, J.S.R., and Buick, R. (1981) An early habitat of life. Scientific Amer. 245, 64–73.

    Article  Google Scholar 

  • Halmann, M. and Aurian-Blajeni, B. (1981) Photoassisted carbon dioxide reduction and formation of two-and three-carbon compounds, in Y. Wolman (ed.) Origins of Life, D. Reidel Publishing Company, Dordrecht, pp. 143–150.

    Chapter  Google Scholar 

  • Hartman, H. (1975) Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4, 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, W.K. and Davis, D.R. (1975) Satellite sized planetesimals and lunar origin. Icarus 24, 504–515.

    Article  Google Scholar 

  • Hedges, J.I. and Hare, P.E. (1987) Amino acid adsorption by clay minerals in distilled water. Geochim. Cosmochim. Acta 51, 255–259.

    Article  CAS  Google Scholar 

  • Henderson-Sellers, A. and Henderson-Sellers, B. (1988) Equable climate in the early Archaean. Nature 336, 117–118.

    Article  Google Scholar 

  • Hennet, J-C., Holm, N.G. and Engel, M.H. (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of a life: a perpetual phenomenon? Naturwiss. 79, 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Holland, H. (1973) The oceans: apossible source of iron in iron-formations. Econ. Geol. 68, 545–557.

    Article  Google Scholar 

  • Holland, H.D. (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton Unversity Press, Princeton.

    Google Scholar 

  • Holm, N. (1985) New evidence for a tubular structure of b-iron(III) oxide hydroxide -akaganeite. Origins of Life 15, 131–139.

    Article  CAS  Google Scholar 

  • Ingmanson, D.E. and Dowler, M.J. (1977) Chemical evolution and the evolution of the Earth’s crust. Origins of Life 8, 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Javoy, M., Pineau, F. and Allegre, C.J. (1982) Carbon geodynamic cycle. Nature 300, 171–173.

    Article  CAS  Google Scholar 

  • Kasting, J.F., Pollack, J.B. and Crisp, D. (1984) Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J Atmos. Chem. 1, 403–428.

    Article  PubMed  CAS  Google Scholar 

  • Kasting, J.F., Zahnle, K.F., Pinto, J.P. and Young, A.Y. (1989) Sulfur, ultraviolet radiation, and the early evolution of life. Origins of Life Evol. Bios. 19, 95–108.

    Article  CAS  Google Scholar 

  • Kasting, J.F. (1990) Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Origins of Life Evol. Bios. 20, 199–231.

    Article  CAS  Google Scholar 

  • Kastings, J.F., Pollack, J.B., and Crisp, D. (1984) Effects of high CO2 levels on surface temperatures and atmospheric oxidation state on the early Earth. J. Atmos. Chem. 1, 403–428.

    Article  Google Scholar 

  • Katsura, T. and Ito, E. (1990) Melting and subsolidus phase relations in the MgSiO3-MgCO3 system at high pressures: implications to evolution of the Earth’s atmosphere. Earth Planet. Sci. Lett. 99, 110–117.

    Article  CAS  Google Scholar 

  • Kempe, S., and Degens, E.T. (1985) An early soda ocean? Chem. Geol. 53, 95–108.

    Article  CAS  Google Scholar 

  • Koch, A.L. (1985) Primeval cells: Possible energy-generating and cell-division mechanisms. J. Mole. Evol. 21, 270–277.

    Article  CAS  Google Scholar 

  • Lahav, N. (1991) Prebiotic co-evolution of self-replication and translation or RNA world? J. Theor. Biol. 151, 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Lahav, N. and Chang, S (1976) The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J. Mol. Evol. 8, 357–380.

    Article  PubMed  CAS  Google Scholar 

  • Lange, M.A. and Ahrens, T.J. (1982) The evolution of an impact-generated atmosphere. Icarus 51, 96–120.

    Article  CAS  Google Scholar 

  • Lerman, L. (1986) Potential role of bubbles and droplets in primordial and planetary chemistry: exploration of the liquid-gas interface as a reaction zone for condensation reactions. Origins of Life 16, 201–202.

    Article  Google Scholar 

  • Liss, P.S. (1975) Chemistry of the sea surface microlayer, in J.P. Riley and G. Skirrow (eds.), Chemical Oceanography, Academic Press, London, pp. 193–243.

    Google Scholar 

  • Maclntyre, F. (1974) The top millimeter of the ocean. Scientific Amer. 230, 62–77.

    Article  Google Scholar 

  • Maclntyre, F. (1974) Chemical fractionation and sea-surface microlayer processes, in E.D. Goldberg (ed.), The Sea 5, John Wiley and Sons, New York, pp. 245–299.

    Google Scholar 

  • Maclntyre, F. and Winchester, J.W. (1969) Phosphate ion enrichment in drops from breaking bubbles. J. Phys. Chem. 73, 2163–2169.

    Article  Google Scholar 

  • Mackinnon, I.D.R. and Rietmeijer, F.J.M. (1987) Mineralogy of chondritic interplanetary dust particles. Rev. Geophys 25, 1527–1553.

    Article  CAS  Google Scholar 

  • Maher, K.A. and Stevenson, J.D. (1988) Impact frustration of the origin of life. Nature 331, 612–614.

    Article  PubMed  CAS  Google Scholar 

  • Mathez, E.A. (1984) Influence of degassing on oxidation states of basaltic magmas. Nature 310,371–375.

    Article  CAS  Google Scholar 

  • Matsui, T. and Abe, Y. (1986) Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature 319, 303–308.

    Article  CAS  Google Scholar 

  • Miller, S.L. (1953) A production of amino acids under possible primitive Earth conditions. Science 117, 527–528.

    Article  Google Scholar 

  • Miller, S.L. (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta 23, 480–489.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S.L. and Van Trump, J.E. (1981) The Strecker synthesis in the primitive ocean, in Y. Wolman (ed.) Origins of Life, D. Reidel Publishing Company, Dordrecht, pp. 135–141.

    Chapter  Google Scholar 

  • Miller, S.L. and Bada, J.L. (1988) Submarine hot springs and the origin of life. Nature 334, 609–611.

    Article  PubMed  CAS  Google Scholar 

  • Morowitz, H.J. (1992) Beginnings of Cellular Life, Yale University Press, New Haven.

    Google Scholar 

  • Morowitz, H.J., Heinz, B., and Deamer, D.W. (1988) The chemical logic of a minimum protocell. Origins of Life Evol. Bios. 18, 281–287.

    Article  CAS  Google Scholar 

  • Mukhin, L.M., Gerasimov, M.V. and Safonova, E.N. (1989) Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340, 46–48.

    Article  CAS  Google Scholar 

  • Nissenbaum, A., Kenyon, D.H. and Oro, J. (1975) On the possible role of organic melanoidin polymers as matrices for prebiotic activity. J. Mole. Evol. 6, 253–270.

    Article  CAS  Google Scholar 

  • Oberbeck, V.R. and Fogelman, G. (1989) Impacts and the origin of life. Nature 339, 434.

    Article  PubMed  CAS  Google Scholar 

  • Oberbeck, V.R., McKay, C.P., Scattergood, T.W., Carle, G.C., and Valentin, J.R. (1989) The role of cometary particle coalescence in chemical evolution. Origins of Life and Evol. Biosph. 19, 39–56.

    Article  CAS  Google Scholar 

  • Oberbeck, V.R. and Fogelman, G. (1990) Impact constraints on the environment for chemical evolution and the continuity of life. Origins of Life Evol. Bios. 20, 181–195.

    Article  CAS  Google Scholar 

  • Oberbeck, V.R., Marshall, J. and Shen, T. (1991) Prebiotic chemistry in clouds. J. Mole. Evol. 32, 296–303.

    Article  CAS  Google Scholar 

  • Oberbeck, V.R. and Aggarwal, H. (1993) Comet impacts and chemical evolution on the bombarded Earth. Origins of Life Evol. Bios. 21, 317–338.

    Article  Google Scholar 

  • Oro, J. (1961) Comets and the formation of biochemical compounds on the primitive Earth. Nature 190, 389–390.

    Article  Google Scholar 

  • Owen, T., Cess, R.D., and Ramanathan, V. (1979) Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277, 640–642.

    Article  CAS  Google Scholar 

  • Pinto, J.P., Gladstone, G.R., and Yung, Y.L. (1980) Photochemical reduction of carbon dioxide to formaldehyde in the Earth’s primitive atmosphere. Science 210, 183–185.

    Article  PubMed  CAS  Google Scholar 

  • Pohorille, A. and Benjamin, I. (1991) Molecular dynamics of phenol at the liquid-vapor interface of water. J. Chem. Phys. 94, 5599–5605.

    Article  PubMed  CAS  Google Scholar 

  • Prinn, R.G. and Fegley, B., Jr. (1987) Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundry. Earth Planet. Sci. Lett. 83, 1–15.

    Article  CAS  Google Scholar 

  • Rubey, W.W. (1951) Geologic history of sea water: an attempt to state the problem, Geol. Soc. Am. Bull. 62, 1111–1147.

    Article  CAS  Google Scholar 

  • Sackett, W. (1978) Suspended matter in sea-water, in J.P. Riley and R. Chester (ed.), Chemical Oceanography 7, Academic Press, London, pp. 127–171.

    Google Scholar 

  • Sagan, C. and Khare, B.N. (1971) Long-wavelength ultraviolet photoproduction of amino acids on the primitive Earth. Science 173, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Sagan, C. and Mullen, G. (1972) Earth and Mars: Evolution of atmospheres and surface temperatures. Science 177, 52–56.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, R.A., Ferris, J.P. and Orgel, L.E. (1966) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153, 72–73.

    Article  PubMed  CAS  Google Scholar 

  • Scattergood, T.W., McKay, C.P., Borucki, W.J., Giver, L.P., and Van Ghyseghem, H. (1989) Production of organic compounds in plasmas: a comparison among electric sparks, laser-induced plasmas, and UV light. Icarus 81, 413–428.

    Article  PubMed  CAS  Google Scholar 

  • Schrauzer, G.N., Guth, T.D., and Palmer, M.R. (1979) Nitrogen reducing solar cells, in R.R. Hautala, R.B. King, and C. Kutal (eds.) Solar Energy: Chemical Conversion and Storage, Humana Press, Clifton, New Jersey, pp. 261–269.

    Google Scholar 

  • Schrauzer, G.N., Strampach, N., Hui, L.N. Palmer, M.R. and Salehi, J.(1980) Nitrogen photoreduction on desert sands under sterile conditions. Proc. Nat. Acad. Sci. U.S.A. 80, 3873–3876.

    Article  Google Scholar 

  • Shock, E.L. (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins of Life 20, 331–367.

    Article  CAS  Google Scholar 

  • Shock, E.L. (1990a) Do amino acids equilibrate in hydrothermal fluids?. Geochim. Cosmochim. Acta 54, 1185–1189.

    Article  CAS  Google Scholar 

  • Shock, E.L. (1992) Chemical environments of submarine hydrothermal systems. Origins of Life Evol. Bios. 22, 67–108.

    Article  CAS  Google Scholar 

  • Siskin, M. and Katritzky, A.R. (1991) Reactivity of organic compounds in hot water: Geochemical and technological implications. Science 245, 231–237.

    Article  Google Scholar 

  • Sleep, N.H., Zahnle, K.J., Kasting, J.F. and Morowitz, H.J. (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Snetsinger, K.G., Ferry, G.V., Russell, P.B., Pueschel, R.F. , Oberbeck, V.R., Hayes, D.M. and Fong, W. (1987) Effects of El Chichon on stratospheric aerosols late 1982 to early 1984. J. Geophys. Res. 92, 14761–14771.

    Article  CAS  Google Scholar 

  • Stevenson, D.J. (1983) The nature of the Earth prior to the oldest known rock record: the Hadean Earth, in J.W. Schopf (ed.) Earth’s Earliest Biosphere, Princeton University Press, Princeton, New Jersey, pp. 14–29.

    Google Scholar 

  • Stillwell, W. (1980) Facilitated diffusion as a method for selective accumulation of materials from the primordial oceans by a lipid-vesicle protocell. Origins of Life 10, 277–292.

    Article  PubMed  CAS  Google Scholar 

  • Stribling, R. and Miller, S.L. (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Origins of Life17, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Suslick, K.S. (1989) The chemical effects of ultrasound. Scientific Ameri. 260, 80–86.

    Article  CAS  Google Scholar 

  • Thomsen, L. (1980) 129Xe on the outgassing of the atmosphere. J. Geophys. Res. 85, 4374–4378.

    Article  CAS  Google Scholar 

  • Tingle, T.N., Green, H.W. and Finnerty, A.A. (1988) Experiments and observations bearing on the solubility and diffusivity of carbon in olivine. J. Geophys. Res. 93, 15289–15304.

    Article  CAS  Google Scholar 

  • Tseng, R.-S., Viechnicki, J.T., Slop, R.A. and Brown, J.W. (1992) Sea-to-air transfer of surfaceactive organic compounds by bursting bubbles. J. Geophys. Res. 97, 5201–5206.

    Article  CAS  Google Scholar 

  • Veizer, J. (1983) Geologic evolution of the Archean-Early Proterozoic Earth, in J.W. Schopf (ed.) Earth’s Earliest Biosphere, Princeton University Press, Princeton, New Jersey, pp. 240–259.

    Google Scholar 

  • Virgo, D., Luth, R.W., Moats, M.A. and Ulmer, G.C. (1988) Constraints on the oxidation state of the mantle: an electrochemical and 57Fe Mossbauer study of mantle-derived ilmenites. Geochim. Cosmochim. Acta 52, 1781–1794.

    Article  CAS  Google Scholar 

  • Von Damm, K.L., Edmond, J.M., Grant, B. and Measures, C.I. (1985) Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220.

    Article  Google Scholar 

  • Wachterhauser, G. (1988) Before enzymes and templates: theory of surface metabolism. Microbio. Rev. 52, 452–484.

    Google Scholar 

  • Wachterhauser, G. (1988a) Pyrite formation, the first energy source for life: a hypothesis. System. Applied Microbio. 10, 207–210.

    Article  Google Scholar 

  • Wachterhauser, G. (1990) Evolution of the first metabolic cycles. Proc. Nat. Acad. Sci. USA 87, 200–204.

    Article  Google Scholar 

  • Walker, J.C.G. (1977) Evolution of the Atmosphere, Macmillan, London, p. 205.

    Google Scholar 

  • Walker, J.C.G. (1983) Carbon geodynamic cycle. Nature 303, 730–731.

    Article  Google Scholar 

  • Walker, J.C.G., Klein, C., Schidlowske, M., Schopf, J.W., Stevenson, D.J. and Walter, M.R. (1983) Environmental evolution of the Archean-Early Proterozoic Earth, in J.W. Schopf (ed.) Earth’s Earliest Biosphere, Princeton University Press, Princeton, pp. 260–289.

    Google Scholar 

  • Walker, J.C.G. (1985) Carbon dioxide on the early Earth. Origins of Life 16, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.C.G. and Brimblecombe, P. (1985) Iron and sulfur in the pre-biologic ocean. Precambrian Res. 28, 205–222.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, G.T.Jr. and Duce, R.A. (1978) Open-ocean transport of particulate trace metals by bubbles. Deep Sea Res. 25, 827–835.

    Article  CAS  Google Scholar 

  • Weber, A.L. (1987) The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Origins of Life 17, 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Welhan, J.(1988) Origins of methane in hydrothermal systems. Chem. Geol. 71, 183–198.

    Article  CAS  Google Scholar 

  • Wen, J.-S., Pinto, J.P. and Yung, Y.L. (1989) Photochemistry of CO and H2O: analysis of laboratory experiments and applications to the prebiotic Earth’s atmosphere. J. Geophys. R. 94, 14957–14970.

    Article  CAS  Google Scholar 

  • Wetherill, G.W. (1980) Formation of the terrestrial planets. Ann. Rev. Astrophy. 18, 77–113.

    Article  CAS  Google Scholar 

  • Whitesides, G.M., Mathias, J.P. and Seto, C.T. (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, M.A. and Pohorille, A.(1991) Interaction of monovalent ions with the water liquid-vapor interface: a molecular dynamics study. J. Chem. Phys. 95, 6005–6013.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (1979) A proposal concerning the origin of life on the planet Earth. J. Mol. Evol. 13, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Wolery, T.J. and Sleep, N.H. (1976) Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol. 84, 249–275.

    Article  CAS  Google Scholar 

  • Wood, BJ. and Virgo, D. (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mossbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta 53, 1277–1291.

    Article  CAS  Google Scholar 

  • Wu, J. (1981) Evidence of sea spray produced by bursting bubbles. Science 212, 324–326.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata, H. and Mohri, T. (1982) Formation of cyanate and carbamyl phosphate by electric discharges of model primitive gas. Origins of Life 12, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata, H., Watanabe, M.S. and Namba, T. (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352, 516–519.

    Article  PubMed  CAS  Google Scholar 

  • Yanagawa, H., Ogawa, Y. Kojima, K. and Ito, M. (1988) Construction of protocellular structures under simulated primitive Earth conditions. Origins of Life Evol. Bios. 18, 179–207.

    Article  CAS  Google Scholar 

  • Yanagawa, H. and Kobayashi, K. (1992) An experimental approach to chemical evolution in submarine hydrothermal systems. Origins of Life Evol. Bios. 22, 147–160.

    Article  CAS  Google Scholar 

  • Zahnle, K.J. (1986) Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J. Geophys. Res. 91, 2819–2834.

    Article  CAS  Google Scholar 

  • Zahnle, K.J.(1990) Atmospheric chemistry by large impacts, in V. Sharpton and P. Ward (eds.), Global Catastrophes in Earth History, Geological Society of America, Special Paper 247, pp. 271–288.

    Google Scholar 

  • Zahnle, K.J., Kasting, J.F. and Pollack, J.B. (1988) Evolution of a steam atmosphere during Earth’s accretion. Icarus 74, 62–97.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M. and Bada, J.L.(1989) Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339, 463–465.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chang, S. (1993). Prebiotic Synthesis in Planetary Environments. In: Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V. (eds) The Chemistry of Life’s Origins. NATO ASI Series, vol 416. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1936-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1936-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4856-9

  • Online ISBN: 978-94-011-1936-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics