Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 415))

Abstract

Concepts from elementary quantum mechanics can be used to understand vortex line fluctuations in high-temperature superconductors. Flux lines are essentially classical objects, described by a string tension, their mutual repulsion, and interactions with pinning centers. The classical partition function, however, is isomorphic to the imaginary time path integral description of quantum mechanics. This observation is used to determine the thermal renormalization of critical currents, the decoupling field, the flux lattice melting temperature at low and moderate inductions, and to estimate the degree of entanglement in dense flux liquids. The consequences of the “polymer glass” freezing scenario, which assumes that the kinetic constraints of entanglement prevent field cooled flux liquids from crystallizing, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.A. Abrikosov, Zh. Eksperim. i Theor. Fiz. 32, 1442 (1957) [Soy. Phys. JETP 5, 1174 (1957)].

    Google Scholar 

  2. M. Charalmabous et al., Phys. Rev. B45, 45 (1992).

    Google Scholar 

  3. W.K. Kwok, S. Fleshier, U. Welp, V.M. Vinokur, J. Downey, G.W. Crabtree and M.M. Miller, Phys. Rev. Lett. 69, 3370 (1992).

    Article  ADS  Google Scholar 

  4. D.E. Farrell, J.P. Rice and D.M. Ginsberg, Phys. Rev. Lett. 67, 1165 (1991).

    Article  ADS  Google Scholar 

  5. H. Safar, P.L. Gammel, D.A. Huse. D.J. Bishop, J.P. Rice and D.M. Ginsberg, Phys. Rev. Lett. 69, 824 (1992).

    Article  ADS  Google Scholar 

  6. E. Brezin, D.R. Nelson and A. Thiaville, Phys. Rev. B31, 7124 (1985).

    ADS  Google Scholar 

  7. D.R. Nelson and P. Le Doussal, Phys. Rev. B42, 10112 (1990).

    Google Scholar 

  8. D.S. Fisher, M.P.A. Fisher and D.A. Huse, Phys. Rev. B43, 130 (1991).

    ADS  Google Scholar 

  9. R.C. Budhani, M. Suenaga and H.S. Liou, Phys. Rev. Lett. 69, 3816 (1992).

    Article  ADS  Google Scholar 

  10. M. Konczykowski et al., Phys. Rev. B44, 7167 (1991).

    ADS  Google Scholar 

  11. L. Civale, A.D. Marwich, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. KrusinElbaum, Y. Sun, J.R. Clem and F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991).

    Article  ADS  Google Scholar 

  12. W. Gerhauser et al., Phys. Rev. Lett. 68, 879 (1992).

    Article  ADS  Google Scholar 

  13. V. Hardy et al., Nucl. Instr. and Meth. B54, 472 (1991).

    ADS  Google Scholar 

  14. A.P. Malozemoff, T.K. Worthington, Y. Yeshurun and F. Holtzberg, Phys. Rev. B38, 7203 (1988).

    ADS  Google Scholar 

  15. D.R. Nelson and V.M. Vinokur, Phys. Rev. Lett. 68, 2392 (1992), and Harvard University preprint.

    Google Scholar 

  16. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); R.P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).

    MATH  Google Scholar 

  17. D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D.R. Nelson and S. Seung, Phys. Rev. B39, 9153 (1989).

    Google Scholar 

  18. S.F. Edwards, Proc. Phys. Soc. 85, 613 (1965); P.G. de Gennes, Rep. Prog. Phys. 32, 187 (1969).

    Google Scholar 

  19. M.P.A. Fisher, P.B. Weichman, G. Grinstein and D.S. Fisher, Phys. Rev. B40, 546 (1989), and references therein.

    Google Scholar 

  20. D.R. Nelson, in Phenomenology and Applications of High Temperature Semiconductors, edited by K. Bedell, M. Inui, D. Meltzer, J.R. Schrieffer, and S. Doniach (Addison-Wesley, New York, 1991 ).

    Google Scholar 

  21. L.D. Landau and E.M. Lifshitz, Quantum Mechanics, 2nd. Edition ( Pergammon, New York, 1965 ).

    MATH  Google Scholar 

  22. See, e.g., D.R. Nelson, J. Stat. Phys. 57, 511 (1989).

    Article  ADS  Google Scholar 

  23. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Sanders College, Philadelphia, 1976), Chapter 32.

    Google Scholar 

  24. See, e.g., L.I. Glazman and A.E. Koshelev, Phys. Rev. B43, 2835 (1991).

    ADS  Google Scholar 

  25. D.S. Fisher, Phys. Rev. B22, 1190 (1980).

    ADS  Google Scholar 

  26. M.C. Marchetti and D.R. Nelson, Phys. Rev. B42, 9938 (1990); Physica C174, 40 (1991).

    Google Scholar 

  27. M. Cates, Phys. Rev. B45, 12415 (1992).

    ADS  Google Scholar 

  28. S. Obukhov and M. Rubinstein, Phys. Rev. Lett. 66, 2279 (1991); see also S. Obukhov and M. Rubinstein, Phys. Rev. Lett. 65, 1279 (1990).

    Google Scholar 

  29. E.H. Brandt, J.R. Clem and D.G. Walmsley, J. Low Temp. Phys. 37, 43 (1979).

    Article  ADS  Google Scholar 

  30. V.G. Kogan, Phys. Rev. B 24, 1572 (1981).

    Article  ADS  Google Scholar 

  31. H. Safar, P.L. Gammel, D.A. Huse, D.J. Bishop, W.C. Lee, J. Giapintzakis and D.M. Ginsberg, AT&T Laboratories preprint.

    Google Scholar 

  32. S. Teitel, private communication.

    Google Scholar 

  33. M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin and V.M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989).

    Article  ADS  Google Scholar 

  34. S. Ryu, A. Kapitulnik and S. Doniach, Stanford University preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nelson, D.R. (1993). Vortex Line Fluctuations in Superconductors from Elementary Quantum Mechanics. In: Riste, T., Sherrington, D. (eds) Phase Transitions and Relaxation in Systems with Competing Energy Scales. NATO ASI Series, vol 415. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1908-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1908-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4843-9

  • Online ISBN: 978-94-011-1908-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics