Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 415))

  • 155 Accesses

Abstract

The vortex lattice in extremely anisotropic superconductors has many intriguing properties. These pecularities are very predominant in the oxidic cuprates, especially the Bi and Tl compounds, where they determine new regimes in the field-temperature phase diagram. They are also responsible for the weak flux pinning in extended regions of the mixed state, and cause a relatively large flux creep decay of the magnetization even at low temperatures. In the first part of this contribution several pin mechanisms in Bi:2212 and Y:123 are discussed and compared with experimental results, e.g. pinning by (oxygen) vacancies in the CuO2 layers and by screw dislocations in Y:123 films. In the second part we concentrate on thermally activated phenomena, mainly flux creep. Numerical solutions of the creep equation by Van der Beek et al. are compared to an approximate analytical solution both for collective creep and a logarithmic creep model. Finally, experimental results of magnetic relaxation in Bi:2212 single crystals are analyzed in terms of the models just described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.E. Farrell et al., Phys. Rev. Lett. 63, 782 (1989)

    Article  ADS  Google Scholar 

  2. E.E. Farrell et al., Phys. Rev. B42, 6758 (1990).

    ADS  Google Scholar 

  3. B. Battlog in “High Temperature Superconductivity, Los Alamos Symposium 1989”, edited by K.S. Bedell et al. (Addison Wesley, Redwood City, 1990) p. 37.

    Google Scholar 

  4. W.E. Lawrence and S. Doniach in Proceedings of the Twelfth International Conference on Low Temperature Physics, Kyoto, 1970, edited by E. Kanda (Kigaku, Tokyo, 1971) p. 361.

    Google Scholar 

  5. J.R. Clem, Bull. Am. Phys. Soc. 35, 260 (1990).

    Google Scholar 

  6. A. Houghton, R.A. Pelcovits and A. Sudbo, Phys. Rev. B40, 6763 (1989).

    ADS  Google Scholar 

  7. P. Koorevaar, J. Aarts, P. Berghuis and P.H. Kes, Phys. Rev. B42, 1004 (1990).

    ADS  Google Scholar 

  8. V.M. Vinokur, P.H. Kes and A.E. Koshelev, Physica C168, 29 (1990).

    ADS  Google Scholar 

  9. M.V. Feigelman, V.B. Geshkenbein and A.I. Larkin, Physica C167, 177 (1990).

    ADS  Google Scholar 

  10. D.S. Fisher, M.P.A. Fisher and D. Huse, Phys. Rev. B43, 130 (1991).

    ADS  Google Scholar 

  11. M.V. Feigelman and V.M. Vinokur, Phys. Rev. B41, 8986 (1990).

    ADS  Google Scholar 

  12. D. Nelson, Phys. Rev. Lett. 60, 1973 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  13. E.H. Brandt, Phys. Rev. Lett. 63, 1106 (1989).

    Article  ADS  Google Scholar 

  14. P. Berghuis and P.H. Kes, Phys. Rev. B47, 262 (1993).

    ADS  Google Scholar 

  15. P.H. Kes and J. van den Berg in: Studies in High Temperature Superconductors, Vol. 5, A. Narlikar, ed. (NOVA Science Publishers, New York, 1990) p. 83.

    Google Scholar 

  16. C.J. van der Beek and P.H. Kes, Phys. Rev. B43, 13032 (1991).

    ADS  Google Scholar 

  17. E.J. Kramer, Phil. Mag. 33, 331 (1976);

    Article  ADS  Google Scholar 

  18. C.S. Pande, Appl. Phys. Lett. 28, 462 (1976).

    Article  ADS  Google Scholar 

  19. M. Murakami, M. Morita, K. Doi, K. Miyamoto, Jpn. J. Appl. Phys. 28, 1189 (1989).

    Article  ADS  Google Scholar 

  20. S. Jin, T.H. Tiefel, S. Nakahera, J.E. Graebner, H.M. O’Bryan, R.A. Fastnacht and G.W. Kammlott, Appl. Phys. Lett. 56, 1287 (1990).

    Article  ADS  Google Scholar 

  21. M. Hawley, J.D. Raistrick, J.G. Beery and R.J. Houlton, Science 251, 1587 (1991);

    Article  ADS  Google Scholar 

  22. Ch. Gerber, D. Anselmetti, J.G. Bednorz, J. Mannhart and D.G. Schlom, Nature 350, 279 (1991).

    Article  ADS  Google Scholar 

  23. L.N. Bulaevski, Zh. Eksp. Teor. Fiz. 64, 2241 (1973)

    Google Scholar 

  24. L.N. Bulaevski, [Soy. Phys. JETP 37, 1133 (1973)].

    ADS  Google Scholar 

  25. E.V. Thuneberg, Cryogenics 29, 236 (1989);

    Article  Google Scholar 

  26. E.V. Thuneberg, J. Low Temp. Phys. 57, 415 (1984).

    Article  ADS  Google Scholar 

  27. E.J. Kramer and H.C. Freyhardt, J. Appl. Phys. 51, 4930 (1980);

    Article  ADS  Google Scholar 

  28. T. Matsushita, J. Appl. Phys. 54, 281 (1983);

    Article  ADS  Google Scholar 

  29. A.A. Golub et al., Fiz. Nizk. Temp. 10 [Sov. J. Low Temp. Phys. 10, 133 (1984).

    Google Scholar 

  30. R. Labusch, Crystal Lattice Defects 1, 1 (1969).

    Google Scholar 

  31. A.M. Campbell and J.E. Evetts, Adv. Phys. 21, 199 (1972).

    Article  ADS  Google Scholar 

  32. E.H. Brandt, Z. Phys. B80, 167 (1990).

    Article  ADS  Google Scholar 

  33. R. Griessen, in Concise Encyclopedia of Magnetic and Superconducting Materials, ed. J.E. Evetts (Pergamon, Oxford 1991), p. 144.

    Google Scholar 

  34. D. Dew Hughes, Cryogenics 28, 675 (1988).

    ADS  Google Scholar 

  35. P.H. Kes, J. Aarts, J. van den Berg and C.J. van der Beek, Superc. Sci. Technol. 1, 242 (1989).

    Article  ADS  Google Scholar 

  36. A. Gupta, P. Esquinazi and H.F. Braun, Phys. Rev. Lett. 63, 1869 (1989).

    Article  ADS  Google Scholar 

  37. K. Yamafuji, F. Fujiyoshi, K. Toko and T. Matsushita, Physica, C159, 743 (1989).

    ADS  Google Scholar 

  38. A.M. Campbell, J. Phys. C: Solid St. Phys. 4, 3186 (1971).

    Article  ADS  Google Scholar 

  39. P.W. Anderson and Y.B. Kim, Rev. Mod. Phys. 36, 39 (1964).

    Article  ADS  Google Scholar 

  40. M.R. Beasley, R. Labusch and W.W. Webb, Phys. Rev. 181, 682 (1969).

    Article  ADS  Google Scholar 

  41. C.W. Hagen, R. Griessen and E. Salomons, Physica C157, 199 (1989).

    ADS  Google Scholar 

  42. P. Esquinazi, Solid State Commun. 74, 75 (1990).

    Article  ADS  Google Scholar 

  43. C.J. van der Beek, G.J. Nieuwenhuys and P.H. Kes, Physica C185–189, 2241 (1991).

    ADS  Google Scholar 

  44. Y. Xu, M. Suenaga, A.R. Moodenbaugh and D.O. Welch, Phys. Rev. B40, 10882 (1989);

    ADS  Google Scholar 

  45. R. Griessen, Physica C172, 441 (1991).

    ADS  Google Scholar 

  46. C.W. Hagen and R. Griessen, Phys. Rev. Lett. 62, 2857 (1989).

    Article  ADS  Google Scholar 

  47. T. Nattermann, Phys. Rev. Lett. 20, 2454 (1989).

    Google Scholar 

  48. K.H. Fischer and T. Nattermann, Phys. Rev. B43, 10372 (1991).

    ADS  Google Scholar 

  49. C.J. van der Beek, P.H. Kes, M.P. Maley, M.J.V. Menken and A.A. Menovsky, Physica C195, 307 (1992).

    ADS  Google Scholar 

  50. C.J. van der Beek, G.J. Nieuwenhuys, P.H. Kes, H.G. Schnack and R.P. Griessen, Physica C197, 320 (1992).

    ADS  Google Scholar 

  51. M.J.V. Menken, Ph.D. thesis, University of Amsterdam, 1991.

    Google Scholar 

  52. M.P. Maley, J.O. Willis, H. Lessure and M.E. McHenry, Phys. Rev. B42, 2639 (1990).

    ADS  Google Scholar 

  53. M.V. Feigelman, V.B. Geshkenbein and V.M. Vinokur, Phys. Rev. B43, 6263 (1991);

    ADS  Google Scholar 

  54. E.H. Brandt, Z. Phys. B80, 167 (1990).

    Article  ADS  Google Scholar 

  55. A.P. Malozemoff and M.P.A. Fisher, Phys. Rev. B42, 6784 (1990).

    ADS  Google Scholar 

  56. B.M. Lairson, J.Z. Sun, T.H. Geballe, M.R. Beasley and J.C. Bravman, Phys. Rev. B43, 10405 (1991);

    ADS  Google Scholar 

  57. G. Ries, H.W. Neumüller and W. Schmidt, Superc. Sci. Technol. 5, S81 (1992).

    Article  ADS  Google Scholar 

  58. C. Dekker, W. Eidelloth and R.H. Koch, Phys. Rev. Lett. 68, 3347 (1992).

    Article  ADS  Google Scholar 

  59. V.M. Vinokur, M.V. Feigelman and V.B. Geshkenbein, Phys. Rev. Lett. 67, 915 (1991).

    Article  ADS  Google Scholar 

  60. C.P. Bean, Phys. Rev. Lett. 8, 250 (1962);

    Article  ADS  MATH  Google Scholar 

  61. C.P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  62. Y.B. Kim, C.F. Hempstead and A.R. Strnad, Phys. Rev. Lett. 9, 306 (1962).

    Article  ADS  Google Scholar 

  63. R. Griessen, J.G. Lensink, T.A.M. Schröder and B. Dam, Cryogenics 30, 563 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kes, P.H. (1993). Theory and Experiment of Flux Pinning and Flux Creep in High T c Superconductors. In: Riste, T., Sherrington, D. (eds) Phase Transitions and Relaxation in Systems with Competing Energy Scales. NATO ASI Series, vol 415. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1908-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1908-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4843-9

  • Online ISBN: 978-94-011-1908-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics