Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 415))

Abstract

Understanding the behavior of sliding charge density waves (CDWs) in the presence of an electric field is a challenging problem because one must understand how the competition between randomness and interactions affects the properties of a nonlinear dynamical system with many degrees of freedom. These lectures describe two aspects of this problem. The first concerns the dynamical generation of defects in CDWs when they are subjected to a uniform electric field. It is shown that amplitude defects, or phase slips, must always occur in the presence of a uniform nonzero electric field for a sample of infinite size. The defect density for real CDWs is estimated and it is shown that phase slips could be present in substantial numbers in even high quality samples. The experimental situation is then addressed, and it is seen that phase slips contribute in an important way to the dynamical response of the CDW in almost all samples. The applicability of this work to other systems such as Wigner crystals and flux lattices in type-II superconductors is discussed. The second concerns the dynamical selection of atypical metastable states when the CDW is subjected to repeated identical voltage pulses. The experimental manifestation of this selection is a synchronization of the CDW current response with the end of the driving pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review of CDWs, see, e.g., G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

    Article  ADS  Google Scholar 

  2. H. Fukuyama and P.A. Lee, Phys. Rev. B17, 535 (1978)

    Article  ADS  Google Scholar 

  3. P.A. Lee and T.M. Rice, Phys. Rev. B19, 3970 (1979).

    Article  ADS  Google Scholar 

  4. L. Sneddon, M.C. Cross, and D.S. Fisher, Phys. Rev. Lett. 49, 292 (1982).

    Article  ADS  Google Scholar 

  5. The relation between the equations of motion used here and the original CDW equations of motion is discussed in L. Pietronero and S. Strassler, Phys. Rev. B 28, 5683 (1983)

    Article  Google Scholar 

  6. P.B. Littlewood in Charge-Density Waves in Solids, ed. L.P. Gor’kov and G. Gruner (Elsevier, Amsterdam, 1989)

    Google Scholar 

  7. D.S. Fisher, Phys. Rev. B. 31, 1396 (1985).

    Article  ADS  Google Scholar 

  8. See, e.g., D.S. Fisher, Phys. Rev. B 31, 1396 (1985)

    Google Scholar 

  9. S.N. Coppersmith and D.S. Fisher, Phys. Rev. A 38, 6338 (1988)

    Article  ADS  Google Scholar 

  10. P. Sibani and P.B. Littlewood, Phys. Rev. Lett. 64, 1305 (1990)

    Article  ADS  Google Scholar 

  11. P.B. Littlewood and C.M. Vanna, Phys. Rev. B 36, 480 (1987)

    Article  ADS  Google Scholar 

  12. J.B. Sokoloff, Phys. Rev. B 31, 2270 (1985)

    Article  ADS  Google Scholar 

  13. A. Middleton and D.S. Fisher, Phys. Rev. Lett. 66, 92 (1991)

    Article  ADS  Google Scholar 

  14. C.R. Myers and J.P. Sethna, unpublished; O. Narayan and D.S. Fisher, Phys. Rev. B46, 11520 (1992).

    Article  ADS  Google Scholar 

  15. S.N. Coppersmith, Phys. Rev. Lett. 65, 1044 (1990).

    Article  ADS  Google Scholar 

  16. S.N. Coppersmith and A.J. Millis, Phys. Rev. B44, 7799 (1991).

    Article  ADS  Google Scholar 

  17. S.N. Coppersmith, Phys. Rev. B44, 2887 (1991).

    Article  ADS  Google Scholar 

  18. L. Mihaly, M. Crommie, and G. Gruner, Europhys. Lett. 4, 103 (1987).

    Article  ADS  Google Scholar 

  19. Similar calculations have been done in the context of oscillator entrainment; see, H. Sakaguchi et al., Prog. Theor. Phys. 77, 1005 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  20. S.H. Strogatz and R.E. Mirollo, J. Phys. A 21, L699 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S.H. Strogatz and R.E. Mirollo, Physica D 31, 143 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. The argument involving very rare fluctuations is related to arguments used for random magnets; R.B. Griffiths, Phys. Rev. Left. 23, 17 (1969)

    Article  ADS  Google Scholar 

  23. M. Randeria, J. Sethna, and R. Palmer, Phys. Rev. Lett. 54, 1321 (1985).

    Article  ADS  Google Scholar 

  24. The methods used are similar to those used to calculate the density of states of impurity states in the band tails of disordered semiconductors; see B.I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966)

    Article  ADS  Google Scholar 

  25. J. Zittartz and J.S. Langer, Phys. Rev. 148, 741 (1966).

    Article  ADS  MATH  Google Scholar 

  26. Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975).

    Article  ADS  Google Scholar 

  27. This result can be demonstrated simply for a simplified model.[8]

    Google Scholar 

  28. M. Randeria, J. Sethna, and R. Palmer, Phys. Rev. Lett. 54, 1321 (1985).

    Article  ADS  Google Scholar 

  29. D. DiCarlo, E. Sweetland, M. Sutton, J.D. Brock, and R.E. Thome, Phys. Rev. Lett. 70, 845 (1993).

    Article  ADS  Google Scholar 

  30. See, e.g., P. Segransan et al., Phys. Rev. Lett. 56, 1854 (1986).

    Google Scholar 

  31. See, e.g., S. Bhattacharya, M.J. Higgins, and J. P. Stokes, Phys. Rev. Lett. 63, 1508 (1989).

    Google Scholar 

  32. J. McCarten, D.A. DiCarlo, M.P. Maher, T.L. Adelman, and R.E. Thome, Phys. Rev. B46, 4456 (1992).

    Article  ADS  Google Scholar 

  33. M.J. Higgins, A.A. Middleton and S. Bhattacharya, Bull. A.P.S. 38, 383 (1993), and preprint.

    Google Scholar 

  34. S. Bhattacharya, J.P. Stokes, M.O. Robbins, and R. A. Klemm, Phys. Rev. Lett. 54, 2453 (1985)

    Article  ADS  Google Scholar 

  35. M.O. Robbins, J.P. Stokes, and S. Bhattacharya, Phys. Rev. Lett. 55, 2822 (1985).

    Article  ADS  Google Scholar 

  36. M.S. Sherwin and A. Zettl, Phys. Rev. B32, 5536 (1985).

    Article  ADS  Google Scholar 

  37. P.B. Littlewood, Phys. Rev. B33, 6694 (1986).

    Article  ADS  Google Scholar 

  38. A.A. Middleton, Ph. D. Thesis, Princeton University (1990)

    Google Scholar 

  39. A.A. Middleton, Phys. Rev. Lett. 68, 670 (1992).

    Article  ADS  Google Scholar 

  40. M.P. Maher, T.L. Adelman, J. McCarten, D.A. DiCarlo, and R.E. Thorne, Phys. Rev. B43, 9968 (1991).

    Article  Google Scholar 

  41. S. Bhattacharya et al., Phys. Rev. Lett. 59, 1849 (1987)

    Article  ADS  Google Scholar 

  42. G.L. Link and G. Mozurkewich, Solid State Commun. 65, 15 (1988).

    Article  ADS  Google Scholar 

  43. See, e.g., A. Schmid and W. Hauger, J. Low Temp. Phys. 11, 667 (1973).

    Google Scholar 

  44. The arguments in this paper do not imply an instability of a model including long-wavelength deformations only in systems with unscreened long-ranged interactions if the impurity potential is weak enough. However, this situation is significantly more complicated than that described by the phase deformation model because in such a system shear and rotation cost much less energy than compression, and one must account for this when considering the dynamics of the long-wavelength modes.

    Google Scholar 

  45. In this volume Henrik Jensen describes numerical simulations demonstrating that plastic flow is important in two-dimensional systems. O. Pla and F. Nori (private communication) have also obtained good numerical evidence that inhomogeneous conduction occurs in two dimensions for a model of flux lines with short-range interactions.

    Google Scholar 

  46. S. Bhattacharya and M. Higgins, preprint.

    Google Scholar 

  47. See, e.g., B.G.A. Norman, P.B. Littlewood, and A.J. Millis, Phys. Rev. B46, 3920 (1992).

    Google Scholar 

  48. Y.P. Li, T. Sajoto, L.W. Engel, D.C. Tsui, M. Shayegan, Phys. Rev. Lett. 67, 1630 (1991).

    Article  ADS  Google Scholar 

  49. S.N. Coppersmith and P.B. Littlewood, Phys. Rev. B 36, 311 (1987)

    Article  ADS  Google Scholar 

  50. See also C. Tang et al., Phys. Rev. Lett. 58, 1161 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  51. R.M. Fleming and L.F. Schneemeyer, Phys. Rev. B 33, 2930 (1986).

    Article  ADS  Google Scholar 

  52. S.E. Brown, G. Gruner, and L. Mihaly, Solid State Commun. 57, 165 (1986).

    Article  ADS  Google Scholar 

  53. It can be shown that Eqs. (2) need not have unbounded strains when F(t) takes the form of repeated pulses. In addition the synchronization occurs even if the CDW has broken up into several pieces. Thus, studying Eqs. (2) is adequate to understand the effect.

    Google Scholar 

  54. S.N. Coppersmith, Physics Letters A 125, 473 (1987).

    Article  ADS  Google Scholar 

  55. S.N. Coppersmith, Phys. Rev. A 36, 3375 (1987).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coppersmith, S.N. (1993). Charge Density Waves, Phase Slips, and Instabilities. In: Riste, T., Sherrington, D. (eds) Phase Transitions and Relaxation in Systems with Competing Energy Scales. NATO ASI Series, vol 415. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1908-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1908-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4843-9

  • Online ISBN: 978-94-011-1908-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics