Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 415))

Abstract

These lectures review the results of a number of susceptibility studies of supercooled liquids and glasses. Dielectric response and specific-heat spectroscopy can investigate the motions that occur at the glass transition, Tg, as the liquid slows down and approaches an amorphous solid. In contrast to predictions of mode-coupling theory, these experiments give no evidence of a critical slowing down occurring at high temperature but rather indicate a divergence of the relaxation-time scales at a much lower value close to the Kauzmann temperature where the extrapolation of the entropy of the liquid state crosses that of the crystal. In addition, the dielectric relaxation of the liquid (for all temperatures and samples measured) can be scaled onto a single master curve. In addition to this primary relaxation, dielectric susceptibility can give detailed information about the secondary (Johari-Goldstein) relaxation occurring in the glass phase below Tg. For several glasses, the dielectric studies indicate that the secondary relaxation is due to the activation of single, uncoupled, entities over barriers which have a Gaussian distribution of energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Turnbull, Contemp. Phys. 10, 473 (1969).

    Article  ADS  Google Scholar 

  2. Although there is no proof, many people believe that all liquids can be quenched into a glassy state if the cooling rate is great enough. [For a discussion see: F. Spaepen and D. Turnbull, in Rapidly Quenched Metals; Second International Conference, Section I, edited by N. J. Grant and B. C. Giessen page 205 (MIT Press, 1976).] For example, the Lennard-Jones computer “liquid”, which is a good approximation to liquid argon, can be quenched into a glass using cooling rates which are much greater than can be currently attained in the laboratory

    Google Scholar 

  3. See e.g.: A. Rahman, M.J. Mandell and J.P. McTague, J. Chem. Phys. 64, 1564 (1976)

    Article  ADS  Google Scholar 

  4. J. Fox and H.C. Andersen, J. Phys. Chem. 88, 4019 (1984).

    Article  Google Scholar 

  5. To see the relationship between the values of To obtained from these two fits see: J. Souletie, J. Phys. (Paris) 49, 1211 (1988).

    Google Scholar 

  6. If the time scale, or the viscosity, diverged only at T = 0 there would be no need to postulate the existence of a glass transition.

    Google Scholar 

  7. See: E. Rössler, Phys. Rev. Lett. 65, 1595 (1990)

    Article  ADS  Google Scholar 

  8. D. Richter, R. Zorn, B. Farago, B. Frick and L. J. Fetters, Phys. Rev. Lett. 68, 71, (1992)

    Article  ADS  Google Scholar 

  9. E. W. Fisher, E. Donth and W. Steffen, Phys. Rev. Lett. 68, 2344 (1992).

    Article  ADS  Google Scholar 

  10. C. A. Angell, in Proceedings of the Workshop on Relaxations in Complex Systems, edited by K. L. Ngai and G. B. Wright (National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA, 22161, 1984) p 3.

    Google Scholar 

  11. T. A. Witten, Phys. Today, 43 #7 (July) 21 (1990).

    Article  Google Scholar 

  12. W. Kauzmann, Chem. Rev. 43, 219 (1948).

    Article  Google Scholar 

  13. P.F. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).

    Article  ADS  Google Scholar 

  14. N. O. Birge and S. R. Nagel, Phys. Rev. Lett. 54, 2674 (1985)

    Article  ADS  Google Scholar 

  15. N. O. Birge and S. R. Nagel, Rev. Sci. Instr. 58, 1464 (1987)

    Article  ADS  Google Scholar 

  16. N. O. Birge, Phys. Rev. B 34, 1631 (1986)

    Article  ADS  Google Scholar 

  17. P. K. Dixon, Phys. Rev. B 42, 8179 (1990).

    Article  ADS  Google Scholar 

  18. G. S. Grest and S. R. Nagel, J. Phys. Chem. 91, 4916 (1987).

    Article  Google Scholar 

  19. P. K. Dixon and S. R. Nagel, Phys. Rev. Lett. 61, 341 (1988).

    Article  ADS  Google Scholar 

  20. R. M. Ernst, S. R. Nagel and G. S. Grest, Phys. Rev. B 43, 8070 (1991).

    Article  ADS  Google Scholar 

  21. T. Christensen, J. Phys. (Paris) Colloq. 46, C8–635 (1985).

    Article  Google Scholar 

  22. See J. Wong and C. A. Angell, Glass: Structure by Spectroscopy(Dekker, New York, 1976) for an excellent review of much of the literature on the glass transition up until 1976.

    Google Scholar 

  23. D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).

    Article  ADS  Google Scholar 

  24. T. D. Davis and T. A. Litovitz, Physical AcousticsVol. 2B, Academic Press, Inc., N. Y. (1965).

    Google Scholar 

  25. Y. H. Jeong, S. R. Nagel and S. Bhattacharya, Phys. Rev. A 34, 602 (1986).

    Article  ADS  Google Scholar 

  26. Y. H. Jeong, Phys. Rev. A 36, 766 (1987).

    Article  ADS  Google Scholar 

  27. K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).

    Article  ADS  Google Scholar 

  28. S. Havriliak and S. Negami, J. Polym. Sci. Polym. Symp. 14, 89 (1966).

    Google Scholar 

  29. R. Kohlrausch, Pogg. Ann. Phys. 91, 198 (1854).

    Google Scholar 

  30. G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  31. M. H. Cohen and G. S. Grest, Phys. Rev. B 24, 4091 (1981)

    Article  ADS  Google Scholar 

  32. R. G. Palmer, D. Stein, E. Abrahams and P.W. Anderson Phys. Rev. Lett. 53, 958 (1984)

    Article  ADS  Google Scholar 

  33. J. T. Bendler and M. F. Shlesinger, J. Molecular Liquids 36, 37 (1987)

    Article  Google Scholar 

  34. I. A. Campbell, J. -M. Flesselles, R. Jullien and R. Botet, Phys. Rev. B 37, 3825 (1988)

    Article  ADS  Google Scholar 

  35. J. Kakalios, R. A. Street and W. B. Jackson, Phys. Rev. Lett. 59, 1037 (1987)

    Article  ADS  Google Scholar 

  36. V. Degiorgio, T. Bellini, R. Piazza, F. Mantegazza and R. E. Goldstein, Phys. Rev. Lett. 64, 1043 (1990).

    Article  ADS  Google Scholar 

  37. F. Mezei, W. Knaak and B. Farago, Phys. Rev. Lett. 58, 571 (1987).

    Article  ADS  Google Scholar 

  38. In the case of glycerol, the temperature dependence was less than we could distinguish by specific-heat spectroscopy (see Ref. 10). However, using dielectric spectroscopy the temperature dependence of w was cearly discernable.

    Google Scholar 

  39. N. O. Birge, Y. H. Jeong and S. R. Nagel, in Dynamic Aspects of Structural Change in Liquids and Glasses, Annals of the New York Acad. of Sciences vol 484. Edited by C. Austen Angell and M. Goldstein.(New York Academy of Sciences, New York, 1986 ), page 101.

    Google Scholar 

  40. P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams and J. P. Carini, Phys. Rev. Lett. 65, 1108 (1990).

    Article  ADS  Google Scholar 

  41. L. Wu, P. K. Dixon, S. R. Nagel, B. D. Williams and J. P. Carini, J. Non-Cryst. Solids 131, 32 (1991).

    Article  ADS  Google Scholar 

  42. T. C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56, 854 (1986)

    Article  ADS  Google Scholar 

  43. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. L. P. Kadanoff, S. R. Nagel, L. Wu, and S.-M. Zhou, Phys. Rev. A 39, 6524, (1989).

    Article  ADS  Google Scholar 

  45. R. V. Chamberlin, Phys. Rev. Lett. 66, 959 (1991)

    Article  ADS  Google Scholar 

  46. R. V. Chamberlin and D. N. Haines, Phys. Rev. Lett. 65, 2197 (1990).

    Article  ADS  Google Scholar 

  47. A. Schönhals, F. Kremer and E. Schlosser, Phys. Rev. Lett. 67, 999 (1991).

    Article  ADS  Google Scholar 

  48. N. Menon and S. R. Nagel (to be published).

    Google Scholar 

  49. P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, and J. P. Carini, Phys. Rev. Lett. 66, 960 (1991).

    Article  ADS  Google Scholar 

  50. A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).

    Article  ADS  Google Scholar 

  51. I. A. Campbell, J. M. Flesselles, R. Julien and R. Botet J. Phys. C20, L47 (1987)

    ADS  Google Scholar 

  52. For a review see also D. L. Stein and R. G. Palmer in “Complex Systems, SFI Studies in Sciences of Complexity” Ed. D. L. Stein (Addison-Wesley Longman Publishing Group Ltd.,1989) p. 1.

    Google Scholar 

  53. See: W. Götze, these proceedings.

    Google Scholar 

  54. G. Li, W. M. Du, X. K. Chen, H. Z. Cummins and N. J. Tao, Phys. Rev. A 45, 3867 (1992).

    Article  ADS  Google Scholar 

  55. G. Li, W. M. Du, A. Sakai and H. Z. Cummins, Phys. Rev. A 46, 3343 (1992).

    Article  ADS  Google Scholar 

  56. B. Kim and G. F. Mazenko, Phys. Rev. A 45, 2393 (1992).

    Article  ADS  Google Scholar 

  57. G. P. Johari and M. Goldstein, J. Phys. Chem. 74, 2034 (1970)

    Article  Google Scholar 

  58. G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)

    Article  ADS  Google Scholar 

  59. G. P. Johari and M. Goldstein, J. Chem. Phys. 55, 4245 (1971).

    Article  ADS  Google Scholar 

  60. G. P. Johari, J. Chem. Phys. 58, 1755 (1973)

    Article  Google Scholar 

  61. G. P. Johari, Ann. N.Y. Acad. Sci. 279, 117 (1976).

    Article  ADS  Google Scholar 

  62. E. Leutheusser, Phys. Rev. A 29, 2765 (1984)

    Article  ADS  Google Scholar 

  63. U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C 17, 5915 (1984)

    Article  ADS  Google Scholar 

  64. S. P. Das and G. F. Mazenko, Phys Rev. A 34, 2265 (1986).

    Article  ADS  Google Scholar 

  65. For a comprehensive review see: W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992), and references therein.

    Google Scholar 

  66. W. Götze and L. Sjögren, J. Phys.: Condens. Matter 1, 4183 (1989).

    Article  Google Scholar 

  67. See: U. Buchenau, these proceedings.

    Google Scholar 

  68. L. Wu and S. R. Nagel, Phys. Rev. B 46, 11198 (1992).

    Article  ADS  Google Scholar 

  69. C. A. Angell, Chemical Review 90, 523 (1990).

    Article  Google Scholar 

  70. L. Wu, Phys. Rev. B 43, 9906 (1991).

    Article  ADS  Google Scholar 

  71. N. O. Birge, Y. H. Jeong, S. R. Nagel, S. Bhattacharya and S. Susman, Phys. Rev. B 30, 2306 (1984)

    Article  ADS  Google Scholar 

  72. L. Wu, R. M. Ernst, Y. H. Jeong, S. R. Nagel and S. Susman, Phys. Rev. B. 37, 10444 (1988)

    Article  ADS  Google Scholar 

  73. R. M. Ernst, L. Wu, S. R. Nagel and S. Susman, Phys. Rev. B 38, 6246 (1988).

    Article  ADS  Google Scholar 

  74. J. P. Sethna and K. S. Chow, Phase Transitions 5, 317 (1985)

    Article  Google Scholar 

  75. M. Meissner, W. Knaak, J. P. Sethna, K. S. Chow, J. J. De Yoreo and R. O. Pohl, Phys. Rev. B32, 6091 (1985)

    Article  ADS  Google Scholar 

  76. J. P. Sethna, N. Y. Acad. Sci. 484, 130 (1986).

    Article  ADS  Google Scholar 

  77. P. K. Dixon, S. R. Nagel and D. A. Weitz, J. Chem. Phys. 94, 6924 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagel, S.R. (1993). Susceptibility Studies of Supercooled Liquids and Glasses. In: Riste, T., Sherrington, D. (eds) Phase Transitions and Relaxation in Systems with Competing Energy Scales. NATO ASI Series, vol 415. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1908-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1908-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4843-9

  • Online ISBN: 978-94-011-1908-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics