Skip to main content

Abstract

The constant demand for lighter and more efficient structural configurations has led the structural engineer to the use of new man-made materials. At the same time, this demand has forced upon him very sophisticated methods of testing, analysis and design, as well as of fabrication and manufacturing. The recent explosive progress in the production and use of composite materials has pointed toward the clear possibility of man creating specific materials for specific applications. At the same time, it has been realized that there arise demands for: a complete understanding of the behaviour of composite materials and the influences on this behaviour; establishment of design criteria upon which proper use of composites can rest; and the training of engineers in the design and use of composite structures. For all three items, it is important to recognize that, with the advent of composite media, certain new material imperfections can be found in composite structures in addition to the better-known imperfections that one finds in metallic structures. Thus, broken fibres, delaminated regions, cracks in the matrix material, as well as holes, foreign inclusions and small voids constitute material and structural imperfections that can exist in composite structures. Imperfections have always existed and their effect on the structural response of a system has been very significant in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a :

Length of delamination

h,H :

Distance of delamination from upper and lower surface, respectively

l 1 :

Distance of delamination from left end of the plate

t :

Thickness of the plate

L :

Length of the plate

ā :

a/L

h :

h/t

H :

H/t = 1–h

aij, Cij:

Constants

A xx C xx :

Axial extensional stiffness

B xx :

Coefficient of coupling between bending and stretching

C :

End fixity factor (C = 1 for SS and 4 for CC)

D xx :

Axial bending stiffness

Q 11 :

Axial stiffness of single layer

E xx , E yy , v xy :

Material constants

p :

Pcr/Pcrperf

p 3 :

P3/Pthin

P 1 :

Axial forces

Pcrperf:

Cπ2Dxx1/ L2

P thin :

4π 2 D xx/ a 2

P :

Applied compressive force

K l 2 :

P l p/ D xxl

Mi :

Bending moment

N xx :

Stress resultant

V l :

Shear forces

u l ,w l :

In-plane and transverse displacement components

G :

Energy release rate

G:

G*L4/ Q11t5

G* :

Critical value of G

G*:

GL 4 /Q 11 t 5

λ2 :

PL 2 /D xx1

()p :

Primary state parameters

()a :

Additional state parameters

References

  1. Naruoka, M. Bibliography on Theory of Plates, Gihodo, Tokyo.

    Google Scholar 

  2. Takao, Y., Taya, M. and Chou, T. W. (1981) Stress field due to a cylindrical inclusion with constant axial eigenstrain in an infinite elastic body. Journal of Applied Mechanics, 48 (4), 853–8.

    Article  Google Scholar 

  3. Lakshminarayana, H. V. and Murthy, M. V. V. (1976) On stresses around an arbitrarily oriented crack in a cylindrical shell. International Journal of Fracture, 12 (4), 547–66.

    Google Scholar 

  4. Twee, J. and Rooke, D. P. (1979) The stress intensity factor for a crack at the edge of a loaded hole. International Journal of Solids and Structures, 15, 899–906.

    Article  Google Scholar 

  5. Dyshel, M. S. (1981) Fracture of plates with cracks under tension after loss of stability. Journal of Applied Mathematics and Mechanics (PMM), 17 (4), 77–83.

    Google Scholar 

  6. Erdogan, F,. Ratwani, M. and Yuceoglu, U. (1974) On the effect of orthotropy in a cracked cylindrical. International Journal of Fracture, 10 (4), 369–74.

    Article  CAS  Google Scholar 

  7. Krenk, S. (1978) Influence of transverse shear on an axial crack in a cylindrical shell. International Journal of Fracture, 14 (2), 123–42.

    Google Scholar 

  8. Delale, F. and Erdogan, F. (1979) Effect of transverse shear and material orthotropy in a cracked spherical cap. International Journal of Solids and Structures, 15, 907–26.

    Article  Google Scholar 

  9. Lakshminarayana, H. V. and Murthy, M. V. V. (1981) On a finite element model for the analysis of through cracks in laminated anisotropic cylindrical shells. Engineering Fracture Mechanics, 14 (4), 697–712.

    Article  Google Scholar 

  10. Theocaris, P. S. and Milios, J. (1981) Crack-arrest at a bimaterial interface. International Journal of Solids and Structures, 17, 217–30.

    Article  Google Scholar 

  11. Rogers, T. G. (1982) Crack extension and energy release rates in finitely deformed sheet reinforced with inextensible fibers. International Journal of Solids and Structures, 18, 705–21.

    Article  Google Scholar 

  12. Kachanov, L. M. (1976) Separation failure of composite materials. Polymer Mechanics, 6, (12), 812–15.

    Google Scholar 

  13. Williams, J. G., et al. (1979) Recent Developments in the Design, Testing, and Impact Damage-tolerance of Stiffened Composite Panels. NASA TM 80077, April.

    Google Scholar 

  14. Wilkins, D. J., et al. (1982) Characterizing delamination growth in graphite-epoxy. Damage in Composite Materials, ASTM STP 775, (ed. K. L. Reifsnider,) pp. 168–83.

    Google Scholar 

  15. Wang, S. S. (1984) Edge delamination in angle-ply composite laminates. AIAA Journal, 22 (2), 256–64.

    Article  Google Scholar 

  16. Whitcomb, J. D. (1981) Finite element analysis of instability related delamination growth. Journal of Composite Materials, 15, 403–26.

    Article  Google Scholar 

  17. Shivakumar, K. N. and Whitcomb, J. D.,(1985) Buckling of sublaminate in a quasi-isotropic composite laminate. Journal of Composite Materials, 19, 2–18.

    Article  Google Scholar 

  18. Gillespie, J. W. Jr., and Pipes, R. B.,(1984) Compressible strength of composite laminates with interlaminar defects. Composite Structures, 2, 49–69.

    Article  Google Scholar 

  19. Chai, H., Babcock, C. D. and Knauss, W. G.,(1981) One dimensional modelling of failure in laminated plates by delamination buckling. International Journal of Solids and Structures, 17, 1069–83.

    Article  Google Scholar 

  20. Chai, H., Knauss, W. G. and Babcock, C. D., (1983) Observation of damage growth in compressively loaded laminates. Experimental Mechanics, 23, 329–37.

    Article  Google Scholar 

  21. Bottega, W. J. and Maewal, A., (1983) Delamination buckling and growth in laminates. Journal of Applied Mechanics, 50 (1), 184–9.

    Article  Google Scholar 

  22. Bottega, W. J. and Maewal, A.,(1983) Dynamics and delamination buckling. International Journal of Nonlinear Mechanics, 18, (6), 449–63.

    Article  Google Scholar 

  23. Bottega, W. J., (1983) A growth law for the propagation of arbitrary shape delaminations in layered plates. International Journal of Solids and Structures, 19 (11), 1009–17.

    Article  Google Scholar 

  24. Simitses, G. J., Sallam, S. and Yin, W. L.,(1985) Effect of delamination of axially loaded homogeneous laminated plates. AIAA Journal, 23 (9), 1437–44.

    Article  Google Scholar 

  25. Sallam, S. and Simitses, G. J., (1985) Delamination buckling and growth of flat, cross-ply laminates. Composite Structures, 4, 361–81.

    Article  Google Scholar 

  26. Yin, W. L., Sallam, S. N. and Simitses, G. J.,(1986) Ultimate axial load capacity of a delaminated beam-plate. AIAA Journal, 24 (1), 123–8.

    Article  Google Scholar 

  27. Anastasiadis, J. and Simitses, G. J., (1991) Spring simulated delamination of axially-loaded flat laminates. Composite Structures, 17, 67–85.

    Article  Google Scholar 

  28. Leissa, A. W., (1986) Conditions for laminated plates to remain flat under in-plane loading. Composite Structures, 6, 261–70.

    Article  Google Scholar 

  29. Johnson, W. and Ghosh, S. K.,(1981) Some physical defects arising in composite fabrication. Journal of Materials Science, 16, 258–301.

    Article  Google Scholar 

  30. Wang, S. S., (1983) Fracture mechanics for delamination problems in composite materials. Journal of Composite Materials, 17, 210–23.

    Article  CAS  Google Scholar 

  31. Konishi, D. Y. and Johnston, W. R.,(1979) Fatigue effects on delaminations and strength degradation in graphite/epoxy laminates, in Composite Materials: Testing and Design, ASTM STP 674, (ed. S. W. Tsai), Philadelphia, 597–619.

    Chapter  Google Scholar 

  32. Kardomateas, G. A. and Schmuesser, D. W.,(1988) Buckling and postbuckling of delaminated composites under compressive loads including transverse shear effects. AIAA Journal, 26 (3), 337–43.

    Article  CAS  Google Scholar 

  33. Kardomateas, G. A., (1989) Effect of an elastic foundation on the buckling and postbuckling of delaminated composites under compressive loads. Journal of Applied Mechanics, 55 (1), 238–41.

    Article  Google Scholar 

  34. Kardomateas, G. A., (1989) Large deformation effects in the postbuckling behavior of composites with thin film delaminations. AIAA Journal, 27 (5), 624–31.

    Article  CAS  Google Scholar 

  35. Kardomateas, G. A., (1989) End fixity effects on the buckling and postbuckling of delaminated composites. Composites Science and Technology, 34,113–28.

    Article  CAS  Google Scholar 

  36. Kardomateas, G. A., (1989) Geometric nonlinearities in the postbuckling behavior of delaminated composites, in Interlaminar Fracture in Composites, (ed. E. A. Amanios), Trans. Tech. Publication Ltd., Switzerland, 269–84.

    Google Scholar 

  37. Kardomateas, G. A., (1990) Asymptotic analysis considerations on the initial postbuckling behavior of delaminated composites. Acta Mechanica, 83,165–75.

    Article  Google Scholar 

  38. Kardomateas, G. A., (1990) Postbuckling characteristics in delaminated kevlar/epoxy laminates: an experimental study. Journal of Composites Technology and Research (ASTM), 12 (2), 85–90.

    Article  Google Scholar 

  39. Kardomateas, G. A., (1990) Snap buckling of delaminated composites under pure bending. Composites Science and Technology, 39, 63–74.

    Article  Google Scholar 

  40. Kapania, R. K. and Wolfe, D. R., (1987) Delamination buckling and growth in axially loaded beam-plates, Proceedings of AIAA/ASME/ASCE/AHS 28th SDM Conference, Monterey, CA, 766–75.

    Google Scholar 

  41. Sheinman, I., Bass, M. and Ishai, O.,(1989) Effect of delamination on stability of laminated composite strip. Composite Structures, 11, 227–42.

    Article  Google Scholar 

  42. Yin, W. L. and Fei, Z., (1984) Buckling load of a circular plate with a concentric delamination. Mechanics Research Communications, 11, 337–44.

    Article  Google Scholar 

  43. Yin, W. L. (1985) Axisymmetric buckling and growth of a circular delamination in a compressed laminate. International Journal of Solids and Structures, 21, 503–14.

    Article  Google Scholar 

  44. Yin, W. L. and Fei, Z.,(1988) Delamination buckling and growth in a clamped circular plate. AIAA Journal, 26, (4), 438–45.

    Article  Google Scholar 

  45. Budiansky, B. and Rice, J. R.,(1973) Conservation laws and energy release rates. Journal of Applied Mechanics, 40 (2), 201–3.

    Article  Google Scholar 

  46. Yin, W. L. and Wang, J. T. S., (1984) The energy-release rate in the growth of a one-dimensional delamination. Journal of Applied Mechanics, 51 (3), 939–41.

    Article  Google Scholar 

  47. Yin, W. L. and Jane, K. C. (1992) Refined buckling and postbuckling analysis of two-dimensional delamination - I. analysis and validation. International Journal of Solids and Structures, 29 (5), 591–610.

    Article  Google Scholar 

  48. Jane, K. C. and Yin, W. L. (1992) Refined buckling and postbuckling analysis of two-dimensional delamination - II. results for anisotropic laiminates and conclusion. International Journal of Solids and Structures, 29 (5), 611–39.

    Article  Google Scholar 

  49. Chai, H. and Babcock, C. D. (1985) Two-dimensional modelling of compressive failure in delaminated laminates. Journal of Composite Materials, 19, 67–98.

    Article  Google Scholar 

  50. Nilsson, K. F. and Storåkers, B. On interface crack growth in composite plates. Journal of Applied Mechanics.

    Google Scholar 

  51. Kassapoglou, C. (1988) Buckling, postbuckling and failure of elliptical delaminations in laminates under compression, Composite Structures, 9, 139–59.

    Article  Google Scholar 

  52. Peck, S. O. (1989) Compressive behavior of delaminated composite plates, PhD Thesis, Stanford University, Stanford, CA.

    Google Scholar 

  53. Kapania, R. K. and Wolfe, D. R. (1988) Buckling of axially loaded beam-plate with multiple delaminations, in Advances in Macro-Mechanics of Composite Material Vessels and Components, (eds D. Hui and T. J. Kozik) ASME PVP, Vol. 146, New York, 1–10.

    Google Scholar 

  54. Lee, J., Gürdal, Z. and Griffin, O. H., Jr., A layer-wise approach for the bifurcation problem in laminated composites with delaminations, AIAA Journal (to appear).

    Google Scholar 

  55. Reddy, J. N. (1987) A generalization of two-dimensional theories of laminated plates. Communications of Applied Numerical Methods, 3, 173–80.

    Article  Google Scholar 

  56. Larsson, P. L. (1991) On multiple delaminations buckling and growth in composite plates. International Journal of Solids and Structures, 27, 1623–37.

    Article  Google Scholar 

  57. Storåkers, B. (1989) Nonlinear aspects of delamination in structural members, in Theoretical Mechanics, (eds P. Germain, M. Pian and D. Caillerie) Elsevier, New York, pp. 315–36.

    Google Scholar 

  58. Williams, J. F., Stouffer, D. C, Ilic, S. and Jones, R. (1986) An analysis of delamination behavior, Composite Structures, 5, 203–16.

    Article  Google Scholar 

  59. Whitcomb, J. D. (1988) Mechanics of Instability-related Delamination Growth. NASA TM-100662, Washington, DC.

    Google Scholar 

  60. Whitcomb, J. D. (1989) Predicted and observed effects of stacking sequence and delamination size on instability related delamination growth. Journal of Composites Technology and Research, 11, 94–8.

    Article  Google Scholar 

  61. Yin, W. L. (1988) The effects of laminated structure on delamination buckling and growth. Journal of Composite Materials, 22, 502–17.

    Article  Google Scholar 

  62. Yin, W. L. (1989) Recent analytical results on delamination buckling and growth, in Interlaminar Fracture of Composites, (ed. E. A. Armanios) Trans Tech Publications, Ltd., Switzerland, 253–68.

    Google Scholar 

  63. Wang, S. S., Zahlan, N. M. and Suemasu, H. (1985) Compressive stability of delaminated random short-fiber composites, Part I - Modelling and methods of analysis. Journal of Composite Materials, 19, 296–316.

    Article  CAS  Google Scholar 

  64. Wang, S. S., Zahlan, N. M. and Suemasu, H. (1985) Compressive stability of delaminated random short-fiber composites. Part II-Experimental and analytical results. Journal of Composite Materials, 19, 317–33.

    Article  CAS  Google Scholar 

  65. Evans, A. G and Hutchinson, J. W. (1984) On the mechanics of delamination and spalling in compressed films. International Journal of Solids and Structures, 20, 455–66.

    Article  Google Scholar 

  66. Donaldson, S. L. (1987) The effect of interlaminar fracture properties on the delamination buckling of composite laminates. Composites Science and Technology, 28, 33–44.

    Article  CAS  Google Scholar 

  67. Sewell, M. J. (1965) The static perturbation technique in buckling problems. Journal of Mechanics and Physics of Solids, 13, 247–54.

    Article  Google Scholar 

  68. Rice, J. R. (1968) A path independent integral and approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 35, (2), 379–86.

    Article  Google Scholar 

  69. Brock, D. (1982) Elementary Engineering Fracture Mechanics, Chapter 5, Martinus Nijhoff, The Hague.

    Book  Google Scholar 

  70. Whitcomb, J. D. (1983) Strain Energy Release Rate Analysis of Cyclic Delamination Growth in Compressively Loaded Laminates, NASA TM-84598, Washington, DC.

    Google Scholar 

  71. Troshin, V. P. (1983) Effect of longitudinal delamination in a laminar cylindrical shell on the critical external pressure. Journal of Composite Materials, 17, 563–7, (translated from Mekhanika Kompozitnykh Materialov, 5, 839–43).

    Google Scholar 

  72. Troshin V. P. (1985) Effects of longitudinal delamination in a laminar cylindrical shell on the critical external pressure. Mechanics of Composite Materials, 17 (5), 563–7.

    Google Scholar 

  73. Troshin, V. P. (1983) Use of three-dimensional model of filler in stability problems for triple-layer shells with delaminations, Mekhanika Kompozitnykh Materialov, 4, 657–62.

    Google Scholar 

  74. Sallam, S. and Simitses, G. J. (1987) Delamination buckling of cylindrical shells under axial compression. Composite Structures, 7, 83–101.

    Article  Google Scholar 

  75. Simitses, G. J. and Chen, Z. Q. (1987) Delamination buckling of pressure-loaded thin cylinders and panels, in Composite Structures-4(ed. I. H. Marshall) 1, Elsevier Applied Science Publishers, London, 294–306.

    Chapter  Google Scholar 

  76. Simitses, G. J. and Chen, Z. Q. (1988) Buckling of delaminated long, cylindrical panels under pressure. Computers and Structures, 28 (2), 173–84.

    Article  Google Scholar 

  77. Bottega, W. J. (1988) On thin film delamination growth in a contracting cylinder, International Journal of Solids and Structures, 24 (1), 13–26.

    Article  Google Scholar 

  78. Chen, Z. Q. and Simitses, G. J. (1988) Delamination buckling of pressure-loaded, cross-ply, laminated cylindrical shells. Zeitschrift für Angewandte Mathematik und Mechanik, 68 (10), 491–9.

    Article  Google Scholar 

  79. Chen, Z. Q. and Simitses, G. J. (1987) On the postbuckling behavior of a thin cylindrical shell, in Composite Structures-5(ed. I. H. Marshall) Elsevier Applied Science Publishers, London, 447–65.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simitses, G.J. (1995). Delamination buckling of flat laminates. In: Turvey, G.J., Marshall, I.H. (eds) Buckling and Postbuckling of Composite Plates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1228-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1228-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4537-7

  • Online ISBN: 978-94-011-1228-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics