Skip to main content

Abstract

The presence of elevated temperature and absorbed moisture can alter significantly the structural response of fibre-reinforced laminated composites. A hygrothermal environment causes degradation in both strength and constitutive properties, particularly in the case of fibre-reinforced polymeric composites. Furthermore, associated hygrothermal expansion, either alone or in combination with mechanically induced deformation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is often imperative to consider environmental effects in the analysis and design of laminated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitney, J. M. and Ashton, J. E. (1971) Effect of environment on the elastic response of layered composite plates. AIAA Journal, 9, 1708–13.

    Article  Google Scholar 

  2. Flaggs, D. L. and Vinson, J. R. (1978) Hygrothermal effects on the buckling of laminated composite plates. Fibre Science and Technology, 11, 353–65.

    Article  Google Scholar 

  3. Lee, S. Y., Chou, C. J., Jang, J. L. and Lin, J. S. (1992) Hygrothermal effects on the linear and non-linear analysis of symmetric angle-ply laminated plates. Composite Structures, 21, 41–8.

    Article  Google Scholar 

  4. Sai Ram, K. S. and Sinha, P. K. (1992) Hygrothermal effects on the buckling of laminated composite plates. Composite Structures, 21, 233–47.

    Article  Google Scholar 

  5. Yang, I.-H. and Shieh, J.-A. (1988) Generic thermal buckling of initially stressed antisymmetric cross-ply thick laminates. International Journal of Solids and Structures, 24, 1059–70.

    Article  Google Scholar 

  6. Librescu, L. and Souza, M. A. (1990) Thermal postbuckling of shear-deformable laminated composite flat panels, in Thermal Effects on Structures and Materials, (eds V. Birman and D. Hui), ASME PVP-Vol. 203, AMD-Vol. 110, pp. 21–8.

    Google Scholar 

  7. Sivakumaran, K. S. (1990) Finite deflections of loosely clamped symmetrically laminated rectangular plates subjected to temperature fields. Journal of Thermal Stresses, 13, 297–313.

    Article  Google Scholar 

  8. Chang, J.-S. and Huang, Y.-P. (1991) Non-linear analysis of composite antisymmetric angle-ply under uniform temperature field. Computers and Structures, 40, 857–69.

    Article  Google Scholar 

  9. Noor, A. K. and Peters, J. M. (1992) Thermomechanical buckling of multilayered composite plates, Journal of Engineering Mechanics, 118, 351–66.

    Article  Google Scholar 

  10. Tauchert, T. R. (1985) Thermal stresses in plates-statical problems, in Thermal Stresses I, (ed. R. B. Hetnarski) Elsevier, Amsterdam, pp. 23–141.

    Google Scholar 

  11. Chang, J.-S. and Leu, S.-Y. (1991) Thermal buckling analysis of antisymmetric angle-ply laminates based on a higher-order displacement field. Composites Science and Technology, 41, 109–28.

    Article  Google Scholar 

  12. Tauchert, T. R., Jonnalagadda, K. and Blandford, G. E. (1993) Thermal buckling of laminated plates using high-order deformation theories, in Composites Properties and Applications (ed. A. Miravete), Woodhead, Zaragoza, Spain, pp. 394–401.

    Google Scholar 

  13. Tauchert, T. R., (1987) Thermal buckling of thick antisymmetric angle-ply laminates, Journal of Thermal Stresses, 10, 113–24.

    Article  Google Scholar 

  14. Sun, L. X. and Hsu, T. R. (1990) Thermal buckling of laminated composite plates with transverse shear deformation, Computers and Structures, 36, 883–9.

    Article  Google Scholar 

  15. Huang, N. N. and Tauchert, T. R. (1990) Thermal buckling of clamped symmetric laminated plates, Impact and Buckling of Structures (eds D. Hui and I. Elishakoff), ASME AD-Vol. 20, AMD-Vol. 114, pp.53–9.

    Google Scholar 

  16. Tauchert, T. R. and Huang, N. N. (1987) Thermal buckling of symmetric angle-ply laminated plates, Composite Structures-4, (ed. I. H. Marshall), Elsevier, London, pp.1.424–1.435.

    Google Scholar 

  17. Meyers, C. A. and Hyer, M. W. (1991) Thermal buckling and postbuckling of symmetrically laminated composite plates, Journal of Thermal Stresses, 14, 519–40.

    Article  Google Scholar 

  18. Chen, L.-W. and Chen, L.-Y. (1987) Thermal buckling of laminated composite plates, Journal of Thermal Stresses, 10, 345–56.

    Article  Google Scholar 

  19. Chen, L.-W. and Chen, L.-Y. (1989) Thermal buckling analysis of composite laminated plates by the finite-element method, Journal of Thermal Stresses, 12, 41–56.

    Article  Google Scholar 

  20. Thangaratnam, K. R., Palaninathan and Ramachandran J. (1989) Thermal buckling of composite laminated plates, Computers and Structures, 32, 1117–24.

    Article  Google Scholar 

  21. Chang, J.-S. (1990) FEM Analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory, Computers and Structures, 37, 925–46.

    Article  Google Scholar 

  22. Chang, J.-S. and Shiao, F.-J. (1990) Thermal buckling analysis of isotropic and composite plates with a hole, Journal of Thermal Stresses, 13, 315–32.

    Article  Google Scholar 

  23. Chandrashekhara, K., (1990) Buckling of multilayered composite plates under uniform temperature field, Thermal Effects on Structures and Materials (eds V. Birman and D. Hui), ASME PVP-Vol. 203, AMD-Vol. 110, pp. 29–33.

    Google Scholar 

  24. Chen, W. J., Lin, P. D. and Chen, L. W. (1991) Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution, Computers and Structures, 41, 637–45.

    Article  Google Scholar 

  25. Huang, N. N. and Tauchert, T. R. (1992) Thermal buckling of clamped symmetric laminated plates, Thin-Walled Structures, 13, 259–73.

    Article  Google Scholar 

  26. Noor, A. K. and Burton, W. S. (1991) Predictor-corrector procedures for thermal buckling analysis of multilayered composite plates, Computers and Structures, 40, 1071–84.

    Article  Google Scholar 

  27. Noor, A. K. and Burton, W. S. (1992) Three-dimensional solutions for thermal buckling of multilayered anisotropic plates, Journal of Engineering Mechanics, 118, 683–701.

    Article  Google Scholar 

  28. Adali, S. and Duffy, K. J. (1990) Optimal design of antisymmetric hybrid laminates against thermal buckling, Journal of Thermal Stresses, 13, 57–71.

    Article  Google Scholar 

  29. Powell, M. J. D. (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives, Computer Journal, 7, 155–62.

    Article  Google Scholar 

  30. Stavsky, Y. (1963) Thermoelasticity of heterogeneous aeolotropic plates, Journal of Engineering Mechanics Division, Proc. ASCE, 89, 89–105.

    Google Scholar 

  31. Huang, N. N. and Tauchert, T. R (1988) Postbuckling response of antisymmetric angle-ply laminates to uniform temperature loading, Acta Mechanica, 72, 173–83.

    Article  Google Scholar 

  32. Huang, N. N. and Tauchert, T. R. (1988) Large deformation of antisymmetric angle-ply laminates resulting from nonuniform temperature loadings, Journal of Thermal Stresses, 11, 287–97.

    Article  Google Scholar 

  33. Huang, N. N. and Tauchert, T. R. (1991) Large deflections of laminated cylindrical doubly-curved panels under thermal loading, Computers and Structures, 41, 303–12.

    Article  Google Scholar 

  34. Ramm, E. (1981) Strategies for tracing the nonlinear response near limit point, Nonlinear Finite Element Analysis in Structural Mechanics (eds W. Wunderlich, E. Stein and K. J. Bathe), Springer, New York, pp. 63–89.

    Google Scholar 

  35. Crisfield, M. A. (1981) A fast incremental/iterative solution procedure that handles snap-through, Computers and Structures, 13, 55–62.

    Article  Google Scholar 

  36. Riks, E. (1979) An incremental approach to the solution of snapping and buckling problems, International Journal of Solids and Structures, 15, 529–51.

    Article  Google Scholar 

  37. Huang, N. N. (1990) Nonlinear thermoelastic analysis of laminated plates and shells, Ph.D. Dissertation, University of Kentucky.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tauchert, T.R. (1995). Temperature and absorbed moisture. In: Turvey, G.J., Marshall, I.H. (eds) Buckling and Postbuckling of Composite Plates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1228-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1228-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4537-7

  • Online ISBN: 978-94-011-1228-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics