Skip to main content

Finite element buckling and postbuckling analyses

  • Chapter
Buckling and Postbuckling of Composite Plates

Abstract

The physical understanding and numerical simulation of the buckling and postbuckling responses of laminated anisotropic plates have been the focus of intense efforts because of the extended use of fibrous composites in aerospace, automotive, shipbuilding and other industries, and the need to establish the practical limits of the load-carrying capability of structures made from these materials. The approximate analytical techniques which have been applied to the buckling and postbuckling of flat composite plates are mostly limited to plates having simple boundary conditions, modelled by the classical lamination theory, and subjected to simple loading states (e.g. [1-7]). The finite element method has enabled the linear instability analysis of composite plates with complex geometry (e.g. plates with cut-outs and/or stiffeners); complicated boundary conditions (e.g. elastic, discontinuous or point supports); variable thickness; and with temperature-dependent material properties. The finite element method has enabled non-linear postbuckling analysis and sensitivity analysis, which can be used to study the sensitivity of the buckling and postbuckling responses to variations in the different material and lamination parameters of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turvey, G. J. and Wittrick, W. H. (1973) The large deflection and postbuckling behavior of some laminated plates. Aeronautical Quarterly, 24, 77–86.

    Google Scholar 

  2. Harris, G. Z. (1975) The buckling and postbuckling behavior of composite plates under biaxial loading. International Journal of Mechanical Sciences, 17 (3), 187–202.

    Google Scholar 

  3. Prabhakara, M. K. and Chia, C. Y. (1973) Postbuckling behavior of rectangular orthotropic plates. Journal of Mechanical Engineering Science, 15 (1), 25–33.

    Google Scholar 

  4. Prabhakara, M. K. and Chia, C. Y. (1976) Postbuckling of angle-ply and anisotropic plates. Ingenieur-Archiv, 45 (2), 131–9.

    Google Scholar 

  5. Zhang, Y. and Matthews, F. L. (1984) Postbuckling behavior of anisotropic laminated plates under pure shear and shear-combined with compressive loading. AIAA Journal, 22 (2), 281–6.

    Google Scholar 

  6. Stein, M. (1983) Postbuckling of orthotropic composite plates loaded in compression. AIAA Journal, 21 (12), 1729–35.

    Google Scholar 

  7. Jeffrey, G. L. (1987) Postbuckling of Laminated Anisotropic Panels. NASA TM-100509, NASA, Washington, DC.

    Google Scholar 

  8. Lekhnitskii, S. G. (1968) Anisotropic Plates. Translated from Russian, Gordon & Breach NY.

    Google Scholar 

  9. Ashton, J. E., Halpin, J. C. and Petit, P. H. (1969) Primer on Composite Materials: Analysis. Technomic, Stamford, CT.

    Google Scholar 

  10. Jones, R. M. (1975) Mechanics of Composite Materials. McGraw-Hill, NY.

    Google Scholar 

  11. Chia, C. Y. (1980) Nonlinear Analysis of Plates. McGraw-Hill, NY.

    Google Scholar 

  12. Whitney, J. M. (1987) Structural Analysis of Laminated Anisotropic Plates. Technomic, Lancaster, PA.

    Google Scholar 

  13. Ambartsumyan, S. A. (1987) Theory of Anisotropic Plates. Nauka, Moscow (in Russian).

    Google Scholar 

  14. Ochoa, O. O. and Reddy, J. N. (1992) Finite Element Analysis of Composite Laminates. Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  15. Leissa, A. W. (1985) Buckling of Laminated Composite Plates and Shell Panels. Report No. AFWAL-TR-85–3069, Wright-Patterson Air Force Base, OH.

    Google Scholar 

  16. Leissa, A. W. (1987) An overview of composite plate buckling, in Composite Structures 4, Proc. of the Fourth International Conference, Vol. 1, Elsevier, London, 1.1–1.29.

    Google Scholar 

  17. Arnold, R. R. and Kedward, K. T. (1989) Stability critical stiffened panels, in Handbook of Composites 2, Structures and Design, (eds C. T. Herakovich and Y. M. Tarnopol’skii), Elsevier, Amsterdam, The Netherlands, 623–65.

    Google Scholar 

  18. Shaw, D. and Tsai, M. Y. (1989) Analysis of delamination in compressively loaded laminates. Composites Science and Technology, 34(1), 1–17.

    CAS  Google Scholar 

  19. Natsiavas, S., Babcock, C. D. and Knauss, W. G. (1990) Postbuckling delamination of a stiffened composite panel using finite elements, in Composite Material Technology, Proc. of Symp., 13th ASME Annual Energy-Sources Technology, 101–6.

    Google Scholar 

  20. Maison, S. and Guedra-Degeorges, D. (1990) Behavior of a local delamination under compressive load. Proc. 17th ICAS 1, 522–7.

    Google Scholar 

  21. Bruno, D. and Grimaldi, A. (1990) Delamination failure of layered composite plates loaded in compression. International Journal of Solids and Structures 26(3), 313–30.

    Google Scholar 

  22. Barbero, E. J. and Reddy, J. N. (1991) Modelling of delamination in composite laminates using a layerwise theory. International Journal of Solids and Structures 28(3), 373–88.

    Google Scholar 

  23. Mukherjee, Y. X. and Ingraffea, A. R. (1991) Delamination buckling of laminated plates. International Journal for Numerical Methods in Engineering 32,1321–37.

    Google Scholar 

  24. Lee, J., Gurdal, Z. and Griffin, O. H., Jr. (1992) A layer-wise approach for the bifurcation problem in laminated composites with delaminations. Proc. 33rd SDM Conf. Part 1,10–20.

    Google Scholar 

  25. Kachanov, L. M. (1988) Delamination Buckling of Composite Materials, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  26. Chen, L.W. and Chen, Y. M. (1986) Buckling of hygrothermal elastic composite plates. Chinese Society of Mechanical Engineers, 7, 279–86.

    Google Scholar 

  27. Bogdanovich, A. E. and Yarve, E. V. (1990) Impact deformation and failure analysis of laminated composite plates. Presented at the ASME Winter Annual Meeting, Dallas, TX, 25–30 Nov.

    Google Scholar 

  28. Bogdanovich, A. E. and Yarve, E. V. (1989) Numerical analysis of the impact deformation of plates made of composites. Translated from Mekhanika Kompozitnykh Materialov, 5, 804–20.

    Google Scholar 

  29. Noor, A. K. (1975) Stability of multilayered composite plates. Fibre Science and Technology, 8, 81–9.

    Google Scholar 

  30. Noor, A. K. and Burton, W. S. (1989) Assessment of shear deformation theories for multilayered composite plates. Applied Mechanics Reviews, 42 (1), 1–13.

    Google Scholar 

  31. Washizu, K. (1982) Variational Methods in Elasiticity and Plasticity, 3rd edn, Pergamon, NY.

    Google Scholar 

  32. Noor, A. K. and Andersen, C. M. (1982) Mixed models and reduced/selective integration displacement models for nonlinear shell analysis. International Journal for Numerical Methods in Engineering, 18, 1429–54.

    Google Scholar 

  33. Noor, A. K. and Peters, J. M. (1983) Mixed models and reduced/selective integration displacement models for vibration analysis of shells, in Hybrid and Mixed Finite Element Methods, (eds S. N. Atluri, R. H. Gallagher and O. C. Zienkiewicz), John Wiley, NY, 537–64.

    Google Scholar 

  34. Batoz, J. L. and Lardeur, P. (1989) A discrete shear triangular nine degrees of freedom element for the analysis of thick to very thin plates. International Journal for Numerical Methods in Engineering, 28, 533–60.

    Google Scholar 

  35. Zienkiewicz, O. C, Taylor, R. L. and Too, J. M. (1971) Reduced integration technique in general analysis of plates and shells. International Journal for Numerical Methods in Engineering, 3, 275–90.

    Google Scholar 

  36. Noor, A. K. and Mathers, M. D. (1975) Shear-Flexible Finite Element Models of Eaminated Composite Plates and Shells. NASA TN-D-8044.

    Google Scholar 

  37. Noor, A. K. and Mathers, M. D. (1977) Finite element analysis of anisotropic plates. International Journal for Numerical Methods in Engineering, 11, 289–307.

    Google Scholar 

  38. Pian, T. H. H. and Wang, D. K. C. (1986) Hybrid plate elements based on balanced stresses and displacements, in Finite Element Methods for Plate and Shell Structures, Volume 1, Pineridge Press, Swansea, UK.

    Google Scholar 

  39. Bathe, K. J. and Dvorkin, E. N. (1985) Short communication-A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation. International Journal for Numerical Methods in Engineering, 21,367–83.

    Google Scholar 

  40. Park, K. C, Pramono, E., Stanley, G. M. and Cabiness, H. A. (1989) The ANS shell elements: earlier developments and recent improvements, in Analytical and Computational Models of Shells, (eds A. K. Noor, T. Belytschko and J. C. Simo), CED Vol. 3, ASME, NY, 217–39.

    Google Scholar 

  41. Alvin, K., de la Fuente, H. M., Haugen, B. and Felippa, C.A. (1992) Membrane triangles with corner drilling freedoms: I. The EFF element. Finite Elements in Analysis and Design, 12 (3–4), 163–88.

    Google Scholar 

  42. Felippa, C. A. and Militello, C. (1992) Membrane triangles with corner drilling freedoms: II. The ANDES element. Finite Elements in Analysis and Design 12 (3–4), 189–202.

    Google Scholar 

  43. Bathe, K. J., Brezzi, F. and Cho, S. W. (1989) The MITC7 and MITC9 plate bending elements. Computers and Structures, 32 (3/4), 797–814.

    Google Scholar 

  44. Belytschko, T., Stolarski, H. and Carpenter, N. (1984) A C triangular plate element with one-point quadrature. International Journal for Numerical Methods in Engineering, 20(5), 787–802.

    Google Scholar 

  45. Reddy, J. N. (1984) A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51, 745–52.

    Google Scholar 

  46. DiSciuva, M. (1986) Bending, vibration and buckling of simply-supported thick multilayered orthotropic plates: an evaluation of a new displacement model. Journal of Sound and Vibration, 105(3), 425–42.

    Google Scholar 

  47. Hinrichsen, R. L. and Palazotto, A. N. (1986) Nonlinear finite element analysis of thick composite plates using cubic spline functions. AIAA Journal, 24(11), 1836–42.

    Google Scholar 

  48. Epstein, M. and Huttelmaier, H. P. (1983) A finite element formulation for multilayered and thick plates. Computers and Structures, 16(5), 645–50.

    Google Scholar 

  49. Owen, D. R. J. and Li, Z. H. (1987) A refined analysis of laminated plates by finite element displacement methods-I. Fundamentals and static analysis. Computers and Structures, 26(6), 907–14.

    Google Scholar 

  50. Owen, D. R. J. and Li, Z. H. (1987) A refined analysis of laminated plates by finite element displacement methods-II. Vibration and stability. Computers and Structures, 26(6), 915–23.

    Google Scholar 

  51. Mau, S. T., Tong, P. and Pian, T. H. H. (1972) Finite element solutions for laminated thick plates. Journal of Composite Materials, 6, 304–11.

    Google Scholar 

  52. Spilker, R. L. (1980) A hybrid-stress finite-element formulation for thick multilayer laminates. Computers and Structures, 11(6), 507–14.

    Google Scholar 

  53. Spilker, R. L. (1982) Hybrid-stress eight-node elements for thin and thick multilayer laminated plates. International Journal for Numerical Methods in Engineering, 18, 801–28.

    Google Scholar 

  54. Jing, H. S. and Liao, M. L. (1989) Partial hybrid stress element for the analysis of thick laminated composite plates. International Journal for Numerical Methods in Engineering, 28, 2813–27.

    Google Scholar 

  55. Felippa, C. A. (1989) Parameterized multifield variational principles in elasticity: I. Mixed functionals. Communications in Applied Numerical Methods, 5, 69–78.

    Google Scholar 

  56. Felippa, C. A. (1989) Parameterized multifield variational principles in elasticity: II. Hybrid functionals and the free formulation. Communications in Applied Numerical Methods, 5, 79–88.

    Google Scholar 

  57. Noor, A. K., Starnes, J. H., Jr. and Peters, J. M. (1993) Thermomechanical buckling and postbuckling of multilayered composite panels. Journal of Composite Structures, 23, 233–51.

    Google Scholar 

  58. Noor, A. K. and Peters, J. M. (1983) Multiple-parameter reduced basis technique for bifurcation and postbuckling analyses of composite plates. International Journal for Numerical Methods in Engineering, 19, 1783–803.

    Google Scholar 

  59. Noor, A. K. and Peters, J. M. (1983) Recent advances in reduction methods for instability analysis of structures. Computers and Structures 16(1–4), 67–80.

    Google Scholar 

  60. Noor, A. K. and Peters J. M. (1992) Thermomechanical buckling of multilayered composite plates. Journal of Engineering Mechanics, ASCE 118(2), 351–66.

    Google Scholar 

  61. Noor, A. K. and Peters, J. M. (1992) Reduced basis technique for calculating sensitivity coefficients of nonlinear structural response. AIAA Journal, 30(7), 1840–7.

    Google Scholar 

  62. Ramm, E. (1981) Strategies for tracing nonlinear response near limit points, in Nonlinear Finite Element Analysis in Structural Mechanics. Proc. Europe-US Workshop. Ruhr Universität Bochum, Germany, 28–31 July, Pergamon, Oxford, 63–89.

    Google Scholar 

  63. Noor, A. K. and Camin, R. A. (1976) Symmetry considerations for anisotropic shells. Computer Methods in Applied Mechanics and Engineering, 9, 317–35.

    Google Scholar 

  64. Noor, A. K., Mathers, M. D. and Anderson, M. S. (1977) Exploiting symmetries for efficient postbuckling analysis of composite plates. AIAA Journal, 15(1), 24–32.

    Google Scholar 

  65. Noor, A. K. and Whitworth, S. L. (1987) Model-size reduction for the buckling and vibration analyses of anisotropic panels. Journal of the Engineering Mechanics Division, ASCE, 113(2), 170–85.

    Google Scholar 

  66. Noor, A. K. (1986) Reduction method for the nonlinear analysis of symmetric anisotropic panels. International Journal for Numerical Methods in Engineering, 23, 1329–41.

    Google Scholar 

  67. Noor, A. K. and Peters, J. M. (1986) Nonlinear analysis of anisotropic panels. AIAA Journal, 24(9), 1545–53.

    Google Scholar 

  68. Noor, A. K. and Peters, J. M. (1987) Preconditioned conjugate technique for the analysis of symmetric anisotropic structures. International Journal for Numerical Methods in Engineering, 24, 2057–70.

    Google Scholar 

  69. Noor, A. K. and Peters, J. M. (1989) Buckling and postbuckling analyses of laminated anisotropic structures. International Journal for Numerical Methods in Engineering, 27(2), 383–401.

    Google Scholar 

  70. Noor, A. K. and Whitworth, S. L. (1988) Computational strategy for analysis of quasi-symmetric structures. Journal of the Engineering Mechanics Division, ASCE 114(3), 456–77.

    Google Scholar 

  71. Noor, A. K., Burton, W. S. and Peters, J. M. (1990) Predictor-corrector procedure for stress and free vibration analyses of multilayered composite plates and shells. Computer Methods in Applied Mechanics arid Engineering, 82(1–3), 341–64.

    Google Scholar 

  72. Noor, A. K. and Burton, W. S. (1991) Predictor-corrector procedures for thermal buckling of multilayered composite plates. Computers and Structures, 40(5), 1071–84.

    Google Scholar 

  73. Robbins, D. H. and Reddy, J. N. (1992) Global/local analysis of laminated composite plates using variable kinematic finite elements, in Proc. 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 13–15 April, Dallas, TX, Part 1, Structures 1, 142–7.

    Google Scholar 

  74. Wang, A. S. D. and Crossman, F. W. (1978) Calculation of edge stresses in multilayer laminates by substructuring. Journal of Composite Materials, 12, 76–83.

    Google Scholar 

  75. Ransom, J. (1992) The coupled analysis of incompatible finite element models. Presented at the 33rd Structures, Structural Dynamics and Materials Conf., 13–15 April, Dallas, TX.

    Google Scholar 

  76. Surana, K. S. (1980) Transition finite elements for three-dimensional stress analysis. International Journal for Numerical Methods in Engineering, 15, 991–1020.

    Google Scholar 

  77. Surana, K. S. (1982) Geometrically nonlinear formulation for the transition finite elements for the three-dimensional solid-shell transition finite elements. Computers and Structures, 15, 549–66.

    Google Scholar 

  78. Fish, J. and Markolefas, S. (1992) The s-version of the finite element method for multilayer laminates. International Journal for Numerical Methods in Engineering, 33(5), 1081–105.

    Google Scholar 

  79. Fish, J. (1992) The s-version of the finite element method. Computers and Structures, 43(3), 539–47.

    Google Scholar 

  80. Singhai, S. N., Lackney, J. J., Chamis, C. C. and Murthy, P. L. N. (1990) Demonstration of Capabilities of High Temperature Composite Analyzer Code HITCAN. NASA TM-102560.

    Google Scholar 

  81. Knight, N. F., Jr. et al. (1991) Global/local methods research using a common structural analysis framework. Finite Elements in Analysis and Design, 9, 91–112.

    Google Scholar 

  82. Thompson, D. M. and Griffin, O. H., Jr. (1990) Two-dimensional to three-dimensional global/local finite element analysis of cross-ply composite laminates. Journal of Reinforced Plastics and Composites, 9, 492–502.

    Google Scholar 

  83. Hirai, T., Katayama, T. and Ishise, T. (1976) On stress concentrations and buckling strength of a fiber reinforced plastic laminate with a hole. Japan Society for Material Science, 25, 436–41.

    Google Scholar 

  84. Mao, K. M. and Sun, C. T. (1991) A refined global-local finite element analysis method. International Journal for Numerical Methods in Engineering, 32, 29–43.

    Google Scholar 

  85. Whitcomb, J. D. (1989) Comparison of full 3-d, thin-film 3-d and thin-film plate analyses of a postbuckling embedded delamination. Proc. 12th Canadian Congress Appl. Mechanics, Vols. 1 and 2, 144–5.

    Google Scholar 

  86. Noor, A. K., Burton, W. S. and Peters, J. M. (1993) Hierarchical adaptive modeling of structural sandwiches and multilayered composite panels. Applied Numerical Mathematics, 14, 69–90.

    Google Scholar 

  87. Noor, A. K. and Burton, W. S. (1992) Accuracy of critical-temperature sensitivity coefficients predicted by multilayered composite plate theories. AIAA Journal, 30(9), 2283–90.

    Google Scholar 

  88. Chelladurai, T., Shastry, B.P. and Rao, G.V. (1984) Effect of fibre orientation on the stability of orthotropic rectangular plates. Fibre Science and Technology, 20(2), 121–34.

    Google Scholar 

  89. Kari Thangaratnam, R., Palaninathan, R. and Ramachandran, J. (1988) Buckling analysis of composite plates and shells. Composite Materials and Structures, Proc. Int. Conf., 249–56.

    Google Scholar 

  90. Singh, G. and Sadasiva Rao, Y. V. K. (1988) Effect of transverse shear on the stability of thick laminated composite plates. Composite Materials and Structures, Proc. Int. Conf., 263–72.

    Google Scholar 

  91. Bruno, D. and Lato, S. (1991) Buckling of moderately thick composite plates. Composite Structures, 18(1), 65–75.

    Google Scholar 

  92. Kozma, F. and Ochoa, O. O. (1986) Buckling of composite plates using shear deformable finite elements. AIAA Journal 24, 1721–3.

    Google Scholar 

  93. Chen, W. and Yang, S. (1991) Buckling analysis of general composite laminates by hybrid-stress finite element method. AIAA Journal, 29, 140–7.

    Google Scholar 

  94. Reddy, J. N. and Khdeir, A. A. (1989) Buckling and vibration of laminated composite plates using various plate theories. AIAA Journal, 27, 1808–17.

    Google Scholar 

  95. Putcha, N. S. and Reddy, J. N. (1986) Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory. Journal of Sound and Vibration, 104, 285–300.

    Google Scholar 

  96. Lundgren, H. R. and Salama, A. E. (1971) Buckling of multilayer plates by finite elements. Journal of the Engineering Mechanics Division, ASCE, 97, 477–94.

    Google Scholar 

  97. Lee, Y. J., Lin, H. J. and Lin, C. C. (1989) A study on the buckling behavior of an orthotropic square plate with a central circular hole. Composite Structures, 13(3), 173–88.

    Google Scholar 

  98. Srivatsa, K. S. and Krishna Murty, A. V. (1992) Stability of laminated composite plates with cutouts. Computers and Structures, 43(2), 273–9.

    Google Scholar 

  99. Lee, Y. J., Lin, H. J. and Lin, C. C. (1989) Buckling analysis of composite laminates. Composite Structures, 12(2), 133–48.

    Google Scholar 

  100. Turvey, G. J. and Sadeghipour, K. (1987) Compression buckling of anisotropic fiber-reinforced flat rectangular plates with central circular cutouts. Proc. ICCM/6th and ECCM/lnd, 5.47–5.56.

    Google Scholar 

  101. Lin, C. and Kuo, C. (1989) Buckling of laminated plates with holes. Journal of Composite Materials, 23, 536–53.

    Google Scholar 

  102. Singh, G., Sadasiva Rao, Y. V. K. and Iyengar, N. G. R. (1989) Buckling of thick layered composite plates under in-plane moment loading. Composite Structures, 13(1), 35–48.

    Google Scholar 

  103. Turvey, G. J. and Sadeghipour, K. (1988) Shear buckling of anisotropic fibre-reinforced rectangular plates with central circular cutouts, in Computer-Aided Design in Composite Material Technology. Proc. Int. Conf., 459–73.

    Google Scholar 

  104. Huang, N. N. and Tauchert, T. R. (1990) Thermal buckling of clamped symmetric laminated plates, in Impact and Buckling of Structures, ASME Winter Annual Meeting, ASME, NY, 53–9.

    Google Scholar 

  105. Chen, L. and Chen, L. (1989) Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Composite Structures, 13(4), 275–87.

    Google Scholar 

  106. Kari Thangaratnam, R., Palaninathan, R. and Ramachandran, J. (1989) Thermal buckling of composite laminated plates. Computers and Structures, 32(5), 1117–24.

    Google Scholar 

  107. Chandrashekhara, K. (1992) Thermal buckling of laminated plates using a shear flexible finite element. Finite Elements in Analysis and Design, 12(1), 51–61.

    Google Scholar 

  108. Chen, L. and Chen, L. (1989) Thermal buckling analysis of composite laminated plates by the finite element method. Journal of Thermal Stresses, 12(1), 41–56.

    Google Scholar 

  109. Chang, J. and Shiao, F. (1990) Thermal buckling analysis of isotropic and composite plates with a hole. Journal of Thermal Stresses 13(3), 315–32.

    Google Scholar 

  110. Dawe, D. J. and Craig, T. J. (1986) The vibration and stability of symmetrically laminated composite rectangular plates subjected to in-plane stresses. Composite Structures, 5, 281–307.

    Google Scholar 

  111. Noor, A. K. and Peters, J. M. (1981) Bifurcation and postbuckling analysis of laminated composite plates via reduced basis technique. Computer Methods in Applied Mechanics and Engineering, 29, 271–95.

    Google Scholar 

  112. Lee, K. J. (1992) Buckling analysis of orthotropic plates using a finite element method of assumed displacement functions. Computers and Structures, 42, 159–66.

    Google Scholar 

  113. Sai Ram, K. S. and Sinha, P. K. (1992) Hygrothermal effects on the buckling of laminated composite plates. Composite Structures, 21(4), 233–47.

    Google Scholar 

  114. Noor, A. K., Starnes, J. H., Jr. and Peters, J. M. (1993) Thermomechanical buckling of multilayered composite panels with cutouts. Proc. AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference, La Jolla, CA, 19–21 April, Part I, 336–50.

    Google Scholar 

  115. Kumar, A. (1989) Postbuckling analysis of orthotropic rectangular plates under uniaxial compression. Aeronautical Society of India, 41, 191–204.

    Google Scholar 

  116. Engelstad, S. P., Reddy, J. N. and Knight, N. F. Jr. (1992) Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression. AIAA Journal, 30(8), 2106–13.

    Google Scholar 

  117. Dawe, D. J. and Lam, S. S. E. (1992) Analysis of the postbuckling behavior of rectangular laminates. Proc. 33rd SDM Conf., Part I, ASME, NY, 219–29.

    Google Scholar 

  118. Noor, A. K., Starnes, J. H. Jr. and Waters, W. A., Jr. (1992) Postbuckling response simulations of laminated anisotropic panels. Journal of the Aerospace Division, ASCE, 5(3), 347–68.

    Google Scholar 

  119. Vandenbrink, D. J. and Kamat, M. P. (1987) Postbuckling response of isotropic and laminated composite square plates with circular holes. Finite Elements in Analysis and Design, 3, 165–74.

    Google Scholar 

  120. Chen, L. and Chen L. (1989) Thermal postbuckling analysis of laminated composite plates by the finite element method. Composite Structures, 12(4), 257–70.

    Google Scholar 

  121. Mei, C. and Gray, C. C. (1991) Finite element analysis of thermal buckling and vibration of thermally buckled composite plates. Proc. 32nd SDM Conf., Part IV, ASME, NY, 2996–3007.

    Google Scholar 

  122. Noor, A. K. and Peters, J. M. (1992) Postbuckling of multilayered composite plates subjected to combined axial and thermal loads. Finite Elements in Analysis and Design, 11, 91–104.

    Google Scholar 

  123. Khoroshun, L. P., Maslov, B. P. and Leshchenko, P. V. (1989) Prediction of Effective Properties of Piezoactive Composite Materials. Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  124. Haritos, G. K. and Srinivasan, S. (eds.) (1981) Smart Structures and Materials. AD Vol. 24. American Society of Mechanical Engineers, NY.

    Google Scholar 

  125. Tarnopol’skii, Yu. M., Zhigun, I. G. and Polyakov, V. A. (1992) Spatially Reinforced Composites. Technomic, Lancaster, PA.

    Google Scholar 

  126. Tsai, S. W. and Hahn, H. T. (1980) Introduction to Composite Materials. Technomic, Westport, CT.

    Google Scholar 

  127. Padovan, J. (1986) Anisotropic thermal stress analysis, in Thermal Stresses I (ed. R. B. Hetnarski), Elsevier, Amsterdam, 143–262.

    Google Scholar 

  128. Bert, C. W. (1975) Analysis of plates, in Composite Materials, Vol. 7, Structural Design and Analysis, Part I, (ed C. C. Chamis), Academic, NY, 149–206.

    Google Scholar 

  129. Noor, A. K. and Burton, W. S. (1990) Assessment of computational models for multilayered anisotropic plates. Composite Structures, 14, 233–65.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noor, A.K. (1995). Finite element buckling and postbuckling analyses. In: Turvey, G.J., Marshall, I.H. (eds) Buckling and Postbuckling of Composite Plates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1228-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1228-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4537-7

  • Online ISBN: 978-94-011-1228-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics