Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 429))

Abstract

The roles of Lie groups in Feynman’s path integrals in non-relativistic quantum mechanics are discussed. Dynamical as well as geometrical symmetries are found useful for path integral quantization. Two examples having the symmetry of a non-compact Lie group are considered. The first is the free quantum motion of a particle on a space of constant negative curvature. The system has a group SO (d, 1) associated with the geometrical structure, to which the technique of harmonic analysis on a homogeneous space is applied. As an example of a system having a non-compact dynamical symmetry, the (d -dimensional harmonic oscillator is chosen, which has the non-compact dynamical group SU (1,1) besides its geometrical symmetry SO (d). The radial path integral is seen as a convolution of the matrix functions of a compact group element of SU (1,1) on the continuous basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Miller, Lie Theory and Special Functions, (Academic Press, New York, 1968).

    MATH  Google Scholar 

  2. N.Ya. Vilenkin, Special Functions and the Theory of Group Representations, (Amer. Math. Soc., Providence, RI, 1968).

    MATH  Google Scholar 

  3. A.O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory, (University of Canterbury Publ., Christchurch, New Zealand, 1971).

    Google Scholar 

  4. A. Inomata and M.A. Kayed, Phys. Lett. A 108 (1985) 9.

    Article  MathSciNet  Google Scholar 

  5. G. Junker and A. Inomata, in M.C. Gutzwiller, A. Inomata, J.R. Klauder and L. Streit (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1986) p. 315.

    Google Scholar 

  6. A. Inomata and R. Wilson, in A.O. Barut and H.D. Doebner (eds.), Conformai Groups and Related Symmetries, (Springer, Berlin, 1986) p.42.

    Chapter  Google Scholar 

  7. M. Böhm and G. Junker, J. Math. Phys. 28 (1987) 1978.

    Article  MathSciNet  MATH  Google Scholar 

  8. A.O. Barut, A. Inomata and G. Junker, J. Phys. A 20 (1987) 6271.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.O. Barut, A. Inomata and G. Junker, J. Phys. A 23 (1990) 1179.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Junker, in V. Sayakanit, W. Sritrakool, J. Berananda, M.C. Gutzwiller, A. Inomata, S. Lundqvist, J.R. Klauder and L.S. Schulman (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1989) p.217.

    Google Scholar 

  11. S. Ozaki, Lecture notes at Kyushu University (1955) unpublished.

    Google Scholar 

  12. S.F. Edwards and Y.V. Gulyaev, Proc. Roy. Soc. London A 279 (1964) 229.

    Article  MathSciNet  Google Scholar 

  13. A. Inomata, Benét Laboratories Technical Report WVT-6718, (1967)

    Google Scholar 

  14. D. Peak and A. Inomata, J. Math. Phys. 10 (1969) 1422.

    Article  MathSciNet  Google Scholar 

  15. M. Böhm and G. Junker, J. Math. Phys. 30 (1989) 1195.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Inomata, H. Kuratsuji and C.C. Gerry, Path Integrals and Coherent States of SU (2) and SU (1,1), (World Scientific, Singapore, 1992).

    Google Scholar 

  17. L.S. Schulman, Phys. Rev. 176 (1968) 1558.

    Article  MathSciNet  Google Scholar 

  18. J.S. Dowker, Ann. Phys. (NY) 62 (1971) 361.

    Article  MathSciNet  Google Scholar 

  19. A.O. Barut, C.K.E. Schneider and R. Wilson, J. Phys. 20, (1979) 2244.

    MathSciNet  Google Scholar 

  20. Private communication with Raj Wilson.

    Google Scholar 

  21. I.H. Duru and H. Kleinert, Phys. Lett. B 84 (1979) 185.

    Article  MathSciNet  Google Scholar 

  22. P. Kustaanheimo and E. Stiefel, J. Reine Angew. Math. 218 (1965) 207.

    MathSciNet  Google Scholar 

  23. R. Ho and A. Inomata, Phys. Rev. Lett. 48 (1982) 231.

    Article  MathSciNet  Google Scholar 

  24. L.H. Hostler, J. Math. Phys. 5 (1964) 591.

    Article  MathSciNet  Google Scholar 

  25. A. Inomata, in M.C. Gutzwiller, A. Inomata, J.R. Klauder and L. Streit (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1986) p. 433, and A. Inomata, in V. Sayakanit, W. Sritrakool, J. Berananda, M.C. Gutzwiller, A. Inomata, S. Lundqvist, J.R. Klauder and L.S. Schulman (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1989) p.112.

    Google Scholar 

  26. A. Inomata, Phys. Lett. A 101 (1984) 253.

    Article  MathSciNet  Google Scholar 

  27. A.O. Barut, A. Inomata and R. Wilson, J. Phys. A 20 (1987) 4075.

    Article  MathSciNet  Google Scholar 

  28. A.O. Barut, A. Inomata and R. Wilson, J. Phys. A 20 (1987) 4083.

    Article  MathSciNet  Google Scholar 

  29. See, e.g., W. Fischer, H. Leschke and P. Müller, J. Phys. A 25 (1992) 3835.

    Article  MathSciNet  MATH  Google Scholar 

  30. See, e.g., W. Fischer, H. Leschke and P. Müller, Ann. Phys. (NY) (1993) in press.

    Google Scholar 

  31. A. Inomata and G. Junker, in H.D. Doebner, W. Scherer and F. Schroeck (eds.), Classical and Quantum Systems — Foundations and Symmetries, (World Scientific, Singapore, 1993) p.334.

    Google Scholar 

  32. A.O. Barut and C. Fronsdal, Proc. Roy. Soc. (Lond.) A 287 (1966) 532.

    Article  MathSciNet  Google Scholar 

  33. A.O. Barut and E.C. Phillips, Comm. Math. Phys. 8 (1968) 52.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Lindblad and B. Nagel, Ann. Inst. Henri Poincaré A 13 (1970) 27.

    MathSciNet  MATH  Google Scholar 

  35. N. Mukunda and B. Radhakrishnan, J. Math. Phys. 14 (1973) 254.

    Article  MathSciNet  MATH  Google Scholar 

  36. R.P. Feynman, Rev. Mod. Phys. 20 (1948) 367.

    Article  MathSciNet  Google Scholar 

  37. M. Kac, Probability and Related Topics in the Physical Science, (Interscience, New York, 1959).

    Google Scholar 

  38. E. Nelson, J. Math. Phys. 5 (1964) 332.

    Article  MATH  Google Scholar 

  39. W. Faris, Pac. J. Math. 22 (1967) 47.

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms (Princeton University Press, Princeton, 1971).

    MATH  Google Scholar 

  41. I.M. Gel’fand, Dokl. Akad. Nauk SSSR 70 (1950) 769.

    Google Scholar 

  42. F.A. Berezin and I.M. Gel’fand, Trans. Amer. Math. Soc. Series 2 21 (1962) 193.

    MathSciNet  Google Scholar 

  43. M.C. Gutzwiller, Physica Scripta T 9 (1985) 184.

    Article  MathSciNet  Google Scholar 

  44. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, (Freeman, San Fransisco, 1970).

    Google Scholar 

  45. C. Grosche and F. Steiner, Ann. Phys. (NY) 182 (1987) 120.

    Article  MathSciNet  Google Scholar 

  46. P.D. Lax and R.S. Phillips, Comm. Pure Appl. Math. 31 (1978) 415.

    Article  MathSciNet  MATH  Google Scholar 

  47. Grosche and Steiner [44] were the first to realize that the Green function can be given in closed form, but their result was incorrect. The correct form of the Green function is given in ref. [10].

    Google Scholar 

  48. M. Moshinsky and C. Quesne, J. Math. Phys. 12 (1971) 1780.

    Article  MathSciNet  MATH  Google Scholar 

  49. V. Bargmann, Ann. Math. 48 (1947) 568.

    Article  MathSciNet  MATH  Google Scholar 

  50. R.L. Shapiro and N.Ya. Vilenkin, in N.A. Markov, V.I. Man’ko and V.V. Dodonov (eds.), Group Theoretical Methods in Physics Vol. I, (VNU Science Press, Utrecht, 1986) p.551.

    Google Scholar 

  51. G. Junker, J. Phys. A 23 (1989) L881.

    Article  MathSciNet  Google Scholar 

  52. A.O. Barut and R. Raczka, Theory of Group Representations and Applications, 2nd edition (Polish Scientific Publ., Warszawa, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Inomata, A., Junker, G. (1994). Path Integrals and Lie Groups. In: Tanner, E.A., Wilson, R. (eds) Noncompact Lie Groups and Some of Their Applications. NATO ASI Series, vol 429. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1078-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1078-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4470-7

  • Online ISBN: 978-94-011-1078-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics