Skip to main content

Gamma-ray sources and equipment

  • Chapter
Industrial Radiology

Abstract

In 1896 Becquerel discovered that certain of the heavier elements emitted penetrating radiation and were unstable; the earlier concept that elements represented the most stable form of matter had therefore to be abandoned. There are three radioactive series known in nature, the parent elements of which are uranium-238, uranium-235 and thorium-232. Each of these decays through a series of daughter elements, which are also radioactive, to a final stable element, which in each series is one of the several isotopes of lead. Radium is one of the daughter elements in the uranium-238 series. The disintegration of the nucleus of a naturallyoccurring radioactive substance is accompanied by the emission of one or more forms of radiation which were named alpha-, beta- and gammarays. Gamma-rays were shown to be penetrating electromagnetic radiation of the same physical nature as X-rays, and it is the radioactive substances emitting gamma-rays which are used in radiography. Alpharays consist of the nuclei of helium and although they may have a considerable kinetic energy they will penetrate only very small thicknesses of material such as, for example, very thin foil. Beta-rays are electrons and also have only a low penetrating power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Commission on Radiological Units (1950) Recommendations, London.

    Google Scholar 

  2. International Commission on Radiological Units, (1975) Am. J. Roentgend. 125(2), 492.

    Google Scholar 

  3. Oddie, T. H. (1937) Brit. J. Radiol, 10, 348.

    Article  CAS  Google Scholar 

  4. Dawson, J. A. T. (1946) J. Sci. Instrum., 23, 138.

    Article  CAS  Google Scholar 

  5. Russ, S. and Jennings, W. A. (1948) Radon: Its Technique and Use, Murray, London.

    Google Scholar 

  6. Rose, J. E. and Swain, R. W. (1950) J. Nat. Cancer Inst., 10, 605.

    Google Scholar 

  7. Muller, D. E. (1952) Phys. Rev., 88, 775.

    Article  CAS  Google Scholar 

  8. Kelly, W. A. and Wiendenbeck, M. L. (1956) Phys. Rev., 102, 1130.

    Article  CAS  Google Scholar 

  9. Halmshaw, R. (1954) Brit. J. Appl. Phys., 5, 238.

    Article  Google Scholar 

  10. Graham, R. L. (1955) Can. J. Phys., 30, 459.

    Article  Google Scholar 

  11. Liden, K. and Starfelt, N. (1955) Brit. J. Appl. Phys., 6, 252.

    Article  Google Scholar 

  12. Halmshaw, R. (1955) Brit. J. Appl. Phys., 6, 8.

    Article  Google Scholar 

  13. Halmshaw, R. and Manly, T. J. (1971) Brit. J. NDT, 13(4), 102.

    CAS  Google Scholar 

  14. Dobrowlski, M. and Jedrzejewski, A. (1975) Brit. J. NDT, 17, 15.

    Google Scholar 

  15. Thiele, H. and Proegler, H. (1976) Proc. 8th World Conf. NDT, Cannes, France, paper 3D12.

    Google Scholar 

  16. Pullen, D. and Hayward, P. (1979) Brit. J. NDT, 21(4), 179.

    CAS  Google Scholar 

  17. West, R. (1953) Nucleonics, 11(2), 20.

    CAS  Google Scholar 

  18. Wilson, E. J. and Dibbs, H. P. (1958) Nucleonics, 16(4), 110.

    CAS  Google Scholar 

  19. Mayneord, W. V. and Ireland, H. D. (1956) Brit. J. Radiol, 29, 277.

    Article  CAS  Google Scholar 

  20. Goryacheva, K. G. (1958) Nauch. Dokl, Vyssh. Scholy. Machino i Pribo., (3), 163.

    Google Scholar 

  21. Hinsley, J. F. (1959) Non-destructive Testing, p. 405. Macdonald & Evans, London.

    Google Scholar 

  22. Isotopen-Technik Dr Sauerwein GmbH, Haan, Germany (1994) Technical literature.

    Google Scholar 

  23. Griverman, J. and Schivlev, J. (1963) Nucleonics, 21(5), 96.

    Google Scholar 

  24. Green, F. L. and Check, W. D. (1960) Non-destructive Testing, 18(6), 382.

    CAS  Google Scholar 

  25. Keriakes, J. G. Krebs, A. T. (1955) Non-destructive Testing, 13(5), 43.

    Google Scholar 

  26. Enemoto, S. and Mori, T. (1959) Rep. Gov. Inst. Nagoya, 8, 418.

    Google Scholar 

  27. Enemoto, S. and Furita, T. (1959) Rep. Gov. Inst. Nagoya, 8, 428.

    Google Scholar 

  28. British Standards Institution (1976) BS 5288.

    Google Scholar 

  29. British Standards Institution (1978) BS 5650.

    Google Scholar 

  30. International Standards Organisation (1978) ISO 3999.

    Google Scholar 

  31. British Patents Office (1985) BP. 2159378A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 R. Halmshaw

About this chapter

Cite this chapter

Halmshaw, R. (1995). Gamma-ray sources and equipment. In: Industrial Radiology. Non-Destructive Evaluation Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0551-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0551-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4244-4

  • Online ISBN: 978-94-011-0551-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics