Skip to main content

Hormones and the Orientation of Growth

  • Chapter
Plant Hormones

Abstract

Hormones are chemical messengers which act at target sites to regulate rates and amounts of growth of cells in tissues of roots, stems, leaves, buds, flowers, and fruits. In this chapter, we shall focus on the roles that hormones play in the orientation of growth of plant organs, particularly of roots and shoots. The basic growth-orienting processes that we shall discuss include phototropism—the orientation of shoots toward unilateral light sources; gravitropism—the orientation of roots downwards and of shoots upwards in response to gravistimulation (placement of plants horizontally); and thigmotropism—the change in orientation of growth in stems from one of rapid elongation to one of repressed elongation and promoted lateral expansion as a result of mechanical perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audus, L.J. (1969) In: Physiology of Plant Growth and Development, pp. 201–212, Wilkins, M.B., ed. McGraw-Hill Book Co., N.Y.

    Google Scholar 

  2. Bandurski, R.S., Schulze, A., Dayanandan, P., Kaufman, P.B. (1984) Response to gravity by Zea mays seedlings. Time course of the response. Plant Physiol. 74, 284–288.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Baskin, T.I., Briggs, W. R., lino, M. (1986) Can lateral auxin redistribution account for phototropism of maize coleoptiles? Plant Physiol. 81, 306–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Blake, T.J., Pharis, R.P., Reid, D.M. (1980) Ethylene, gibberellins, auxin and the apical control of branch angle in a conifer, Cupressus arizonica. Planta 148, 64–68.

    Article  CAS  PubMed  Google Scholar 

  5. Briggs, W.R. (1963) The phototropic responses of higher plants. Ann. Rev. Plant Physiol. 14, 311–353.

    Article  CAS  Google Scholar 

  6. Brock, T.G., Kapen, E.H., Ghosheh, N.S., Kaufman, P.B. (1991) Dynamics of auxin movement in the gravistimulated leaf-sheath pulvinus of oat (Avena sativa) J. Plant Physiol. 138, 57–62.

    Article  CAS  PubMed  Google Scholar 

  7. Brock, T. G., and P. B Kaufman (1991) Growth regulators: an account of hormones and growth regulation. In: Growth and Development (Vol. 10 of Plant Physiology, a Treatise, Steward, F.C., ed) pp. 277–326, Bidwell, R.G.S., ed. Academic Press, New York.

    Google Scholar 

  8. Caspar, T. and Pickard, B.G. (1989) Gravitropism by a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177, 185–197.

    Article  Google Scholar 

  9. Curry, G.M., Thimann, K.V. (1961) Phototropism: The nature of the photoreceptor in higher and lower plants. In: Progress in photobiology, pp. 127–34, Christensen, B.C., Buchmann B., eds. Elsevier Pub. Co., Amsterdam. Netherlands.

    Google Scholar 

  10. Davies, P. J., Doro, J. A., Tarbox, A. W. (1976) The movement and physiological effect of indoleacetic acid following point applications to root tips of Zea mays. Physiol. Plant. 36, 333–337.

    CAS  Google Scholar 

  11. Dennison, D.S. (1979) Phototropism. In: Physiology of Movements, Encyclopedia of Plant Physiology, New Series. Vol. 7. pp. 506–566, Haupt, W., Feinleib, M.E., eds. Springer-Verlag, New York.

    Google Scholar 

  12. Dennison, D.S. (1984) Phototropism. In: Advanced Plant Physiology, pp. 149–162, Wilkins, M.B., ed. Pitman, Marshfield, Mass.

    Google Scholar 

  13. Erner, Y., Jaffe, M.J. (1982) Thigmomorphogenesis: the involvement of auxin and abscisic acid in growth retardation due to mechanical perturbation. Plant and Cell Physiol. 23, 935–941.

    CAS  Google Scholar 

  14. Fahrendorf, T., Beck, E. (1990) Cytosolic and cell-wall-bound acid invertases from leaves of Urtica dioica L.: a comparison. Planta 180, 237–244.

    Article  CAS  PubMed  Google Scholar 

  15. Falke, L., Edwards, K.L., Pickard, B.G., Misler, S. (1988) A stretch-activated anion channel in cultured tobacco cells. FEBS Lett. 237, 141–144

    Article  CAS  PubMed  Google Scholar 

  16. Firn, R.D., Digby, J. (1980) The establishment of tropic curvature in plants. Ann. Rev. Plant Physiol. 31, 31–48.

    Article  Google Scholar 

  17. Gibeaut, D.M., Karuppiah, N., Chang, S-R., Brock, T.G., Vadlamudi, B., Kim, D., Ghosheh, N.S., Rayle, D.L., Carpita, N.C., Kaufman, P.B. (1990) Cell wall and enzyme changes during the graviresponse of leaf-sheath pulvinus of oat (Avena sativa). Plant Physiol. 94, 411–416.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Haberlandt, C. (1928) The statocytes of stems. In: Physiological Plant Anatomy, pp. 606–609. Macmillan, N.Y.

    Google Scholar 

  19. Harrison, M., Pickard, B.G. (1984) Burst of ethylene upon horizontal placement of tomato seedlings. Plant Physiol. 75, 1167–1169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hasenstein, K-H., Evans, M.L. (1986) Calcium dependence of rapid auxin action in maize roots. Plant Physiol. 81, 439–443.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Heathcote, D.G. (1981) The geotropic reaction and statolith movements following geostimulation of mung bean hypocotyls. Plant Cell Environ. 4, 131–140.

    Article  Google Scholar 

  22. Hertel, R., DelaFuente, R.K., Leopold, A.C. (1969) Geotropism and the lateral transport of auxin in the corn mutant amylomaize. Planta 88, 204–214.

    Article  CAS  PubMed  Google Scholar 

  23. Iversen, T.H. (1969) Elimination of geotropic responsiveness in roots of cress (Lepidium sativum) by removal of statolith starch. Physiol. Plant. 22, 1251–1262.

    CAS  Google Scholar 

  24. Jacobs, M. (1983) The localization of auxin transport carriers using monoclonal antibodies. What’s New In Plant Physiology 14, 17–20.

    CAS  Google Scholar 

  25. Jacobs, M., Gilbert, S.F. (1983) Basal localization of the Presumptive auxin transport carrier in pea stem cells. Science 220, 297–1300.

    Article  Google Scholar 

  26. Jaffe, M.J. (1981) Thigmomorphogenesis and thigmonasty. In: McGraw-Hill Yearbook of Science and Technology, pp. 394–395. McGraw-Hill Book Co., New York.

    Google Scholar 

  27. Karuppiah, N., B. Vadlamudi, and P. B. Kaufman (1989) Purification and characterization of soluble (cytosolic) and bound (cell wall) isoforms of invertases in barley (Hordeum vulgare) elongating stem tissue. Plant Physiol. 91, 993–998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kaufman, P.B., Dayanandan, P. (1984) Hormonal regulation of the gravitropic response in grass shoots. In: Hormonal Regulation of Plant Growth and Development, Vol. 1, pp. 369–386, Purohit, S.S., ed. Agro Botanical Pub., Bikaner, India.

    Google Scholar 

  29. Kaufman, P.B., Ghosheh, N., Ikuma, H. (1968) Promotion of growth and invertase activity by gibberellin acid in developing Avena internodes. Plant Physiol. 42, 29–34.

    Article  Google Scholar 

  30. Kaufman, P.B., Song, I., Pharis, R.P. (1985) Gravity perception and responsemechanism in graviresponding cereal grass shoots. In: Hormonal Regulation of Plant Growth and Development, Vol. II. pp. 189–200, Purohit, S.S., ed. Agro Botanical Pub., Bikaner, India.

    Google Scholar 

  31. Kim, W.T., A. Silverstone, W.K. Yip, J.G. Dong, and S.F. Yang (1992) Induction of 1aminocyclopropane- 1-carboxylate synthase mRNAby auxin in mung bean hypocotyls and cultured apple shoots. Plant Physiol. 98, 465–471.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kiss, J.R., Hertel, R., and Sack, F.D. (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177, 198–206.

    Article  Google Scholar 

  33. Klann, E., Yille, S., Bennett, A. (1992) Tomato fruit acid invertase complementary DNA. Plant Physiol. 99, 351–353 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lee, J.S., Evans, M.L. (1985) Polar transport of auxin across gravistimulated roots of maize and its enhancement by calcium. Plant Physiol. 77, 824–827.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lee, J.S., Mulkey, T.J., Evans, M.L. (1983) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol. 73, 874–876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lee, J.S., Mulkey, T.J., Evans, M.L. (1983) Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators. Science 220, 1375–1376.

    Article  CAS  PubMed  Google Scholar 

  37. Li, Y., Hagen, G., Guilfoyle, T.J. (1991) An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. The Plant Cell 3, 1167–1175.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Lu, C.R., Kim, D., Kaufman, P.B. (1992) Changes in the ultrastructure of cell walls, cellulose synthesis, and glucan synthase activity from gravistimulated pulvini of oat (Avena sativa). Intl. Jour. Plant Sci. 153, 164–170.

    Article  CAS  Google Scholar 

  39. Maniatis, T., Fritsch, E.F., Sambrook, J. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  40. McClure, B.A., Guilfoyle, T. (1989) Rapid redistribution of auxin-regulated RNAs during gravitropism. Science 24, 91–93.

    Article  Google Scholar 

  41. Moore, R., Evans, M.L. (1986) How roots perceive and respond to gravity. Amer. Jour. Bot. 73, 574–587.

    Article  CAS  Google Scholar 

  42. Mulkey, T.J., Kuzmanoff, K.M., Evans, M.L. (1982) Promotion of growth and hydrogen ion efflux by auxin in roots of maize pretreated with ethylene biosynthesis inhibitors. Plant Physiol. 70, 186–188.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mulkey, T.J., Kuzmanoff, K.M., Evans, M.L. (1981) Correlation between proton-efflux patterns and growth patterns during geotropism and phototropism in maize and sunflower. Planta 152, 239–241.

    Article  CAS  PubMed  Google Scholar 

  44. Naqvi, S.M., Gordon, S.A. (1966) Auxin transport in Zea mays L. Coleoptiles. I. Influence of gravity on the transport of indoleacetic acid-2–14C. Plant Physiol. 41, 1113–1118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ninnemann, H. (1980) Blue light photoreceptors. BioScience 30, 166–170.

    Article  CAS  Google Scholar 

  46. Osborne, D.J., Wright, M. (1977) Gravity-induced cell elongation. Proc. Roy. Soc. Lond. B. Biol. Sci. 199, 551–564.

    Article  CAS  Google Scholar 

  47. Pharis, R.P., Legge, R.L., Noma, M., Kaufman, P.B., Ghosheh, N.S., LaCroix, J.D., Heller, K. (1981) Changes in endogenous gibberellins and the metabolism of GA4 after geostimulation in shoots of the oat plant (Avena sativa). Plant Physiol. 67, 892–897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Pickard, B.G. (1985) Early events in geotropism of seedling shoots. Ann. Rev. Plant Physiol. 36, 55–75.

    Article  CAS  Google Scholar 

  49. Pickard, B.G. (1985) Roles of hormones in geotropism. In: Hormonal Regulation of Development III. Role of Environmental Factors. Encyclopedia of Plant Physiology, New Series, Vol. 11, pp. 93–281, Pharis, R.P., Reid, D.M., eds. Springer-Verlag, Berlin.

    Google Scholar 

  50. Pickard, B.G., Ding, J.P. (1992) Gravity sensing by higher plants. In: Advances in Comparative and Environmental Physiology, Vol. 10, pp 81–110, Ito, F., ed. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  51. Pickard, B.G., Thimann, K.V. (1966) Geotropic response of wheat coleoptiles in absence of amyloplast starch. J. Gen. Physiol. 49, 1065–1086.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Poovaiah, B.W., Reddy, A.S.N. (1993) Calcium and signal transduction in plants. Critical Rev. Plant Sci. 12, 185–211.

    Article  CAS  Google Scholar 

  53. Ray, T. R., Jr. (1979) Slow motion world of plant behavior visible in rain forest. Smithsonian 9 (12), 121–130.

    Google Scholar 

  54. Rorabaugh, P.A., Salisbury, F.B. (1989) Gravitropism in higher plant shoots: VI. changing sensitivity to auxin in gravistimulated soybean hypocotyls. Plant Physiol. 91, 1329–1338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Scott, T.K., Matthyse, A. (1984) Function of hormones at the whole plant level of organization. In: Hormonal Regulation of Development II. Encyclopedia of Plant Physiology, New Series, Vol. 10, pp. 217–243, Scott, T.K., ed. Springer-Verlag, New York.

    Chapter  Google Scholar 

  56. Shen-Miller, J, Cooper, P, Gordon, S.A. (1969) Phototropism and photoinhibition of basipetal transport of auxin in oat coleoptiles. Plant Physiol. 44, 491–496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Slocum, R.D., Roux, S.J. (1983) Cellular and subcellular localization of calcium in gravistimulated oat coleoptiles and its possible significance in the establishment of tropic curvature. Planta 157, 481–492.

    Article  CAS  PubMed  Google Scholar 

  58. Song, I., Lu, C., Brock, T.G., Kaufman, P.B. (1988) Do starch statoliths act as the gravisensors in cereal grass pulvini? Plant Physiol. 86, 1155–1162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sturm, A., Chrispeels, M.J. (1990) cDNA cloning of carrot extracellular ß-fructosidase and its expression in response to wounding and bacterial infection. The Plant Cell 2, 1107–1119.

    Google Scholar 

  60. Thimann, K.V. (1977) Hormone Action in the Whole Life of Plants. Univ. of Mass. Press, Amherst, Mass.

    Google Scholar 

  61. Trewavas, A.J. (editor). (1992) What remains for the Cholodny-Went theory? Plant, Cell Environ. 15, 759–794.

    Google Scholar 

  62. Wareing, P.F., Phillips, I.D.J. (1981) Growth and Differentiation in Plants. 3rd Ed. Pergamon Press, New York.

    Google Scholar 

  63. Wayne, R., Staves, M.P., and Leopold, A.C. (1992) The contribution of the extracellular matrix to gravisensing in charcean cells. J. Cell Sci. 101, 611–623.

    CAS  PubMed  Google Scholar 

  64. Wilkins, M. B. (1984) Gravitropism. In: Advanced Plant Physiology,pp. 163–185, Wilkins, M.B., ed. Pitman Publishing, Inc., Marshfield, Mass.

    Google Scholar 

  65. Wilkins, M.B. (1966) Geotropism. Ann. Rev. Plant Physiol. 17, 379–408.

    Article  CAS  Google Scholar 

  66. Wright, L.Z., Rayle, D.L. (1983) Evidence for a relationship between It excretion and auxin in shoot gravitropism. Plant Physiol. 72, 991–9944.

    Article  Google Scholar 

  67. Wright, M. (1986) The acquisition of gravisensitivity during development of nodes of Avena fatua. J. Plant Growth Reg. 5, 37–47.

    Article  CAS  Google Scholar 

  68. Wright, M. (1982) The polarity of movement of endogenously produced IAA in relation to a gravity perception mechanism. J. Exp. Bot. 33, 929–934.

    Article  CAS  Google Scholar 

  69. Wright, M., Mousdale, D.M.A., Osborne, D.J. (1978) Evidence for a gravity-regulated level of endogenous auxin controlling cell elongation and ethylene production during geotropic bending in grass nodes. Biochem. Physiol. Pfl. 172, 581–596.

    Google Scholar 

  70. Wu, L.-L., Song, I., Karuppiah, N.B., Kaufman, P.B. (1993) Kinetic induction of oat pulvinus invertase mRNA by gravistimulation and partial cDNA cloning by polymerase chain reaction. Plant Mol. Biol. 21, 1175–1179.

    Article  CAS  Google Scholar 

  71. Wu, L.-L., Song, I., Kim, D., Kaufman, P.B. (1993) Molecular basis of the increase in invertase activity elicited by gravistimulation of oat-shoot pulvini. J. Plant Physiol. 142, 179–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaufman, P.B., Wu, LL., Brock, T.G., Kim, D. (1995). Hormones and the Orientation of Growth. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0473-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0473-9_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2985-5

  • Online ISBN: 978-94-011-0473-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics