Skip to main content

Continuation theorems and periodic solutions of ordinary differential equations

  • Chapter
Topological Methods in Differential Equations and Inclusions

Part of the book series: NATO ASI Series ((ASIC,volume 472))

Abstract

Continuation methods of the Leray-Schauder type play an important role in the theory of differential equations. In these lectures, we present some classical and recent continuation theorems and their application to the existence and multiplicity of periodic solutions of ordinary differential equations. Using the Poincaré operator, and following M.A. Krasnosel’skii and H. Amann, we apply continuation techniques to the computation of the Brouwer degree of some gradient mappings and then describe some recent developments in the method of guiding functions jointly obtained with A.M. Krasnosel’skii, M.A. Krasnosel’skii and A.I. Pokrovskii. We then prove some continuation theorems in spaces of continuous functions and use them in the study of periodic solutions of some complex-valued differential equations in the line of some joint work with R. Manásevitch and F. Zanolin. We finally present some continuation theorems in the absence of a priori bounds, based upon the behavior of some associated functionals, and recently developed with A. Capietto and F. Zanolin. We use them, together with the time-map method, to prove sharp non-resonance conditions for the existence of periodic solutions of perturbed conservative equations of the second order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.C., A primer on connectivity, in Proc. Confer. in Fixed Point Theory, Lecture Notes in Math. 886, Springer, Berlin, 1981, 455–488.

    Chapter  Google Scholar 

  2. Amann, H., A note on degree theory for gradient mappings, Proc. Amer. Math. Soc. 85 (1982), 591–595.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berstein, I. and Halanay, A., Index of a singular point and the existence of periodic solutions of systems with small parameter, Dokl. Akad. Nauk SSSR 111 (1956), 923–925 (Russian).

    MathSciNet  MATH  Google Scholar 

  4. Bethuel, F., Brezis, H. and Helein, F., Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994.

    Book  MATH  Google Scholar 

  5. Campos, J. and Ortega, R., Nonexistence of periodic solutions of a complex Riccati equation, Differential and Integral Equations, to appear.

    Google Scholar 

  6. Capietto, A., Continuation results for operator equations in metric ANRs, Boll. Un. Mat. Ital. (7) 8-B (1994), 135–150.

    MathSciNet  Google Scholar 

  7. Capietto, A., Henrard, M., Mawhin, J. and Zanolin, F., A continuation apprach to some forced superlinear Sturm-Liouville boundary value problems, Topological Methods in Nonlinear Analysis, 3 (1994), 81–100.

    MathSciNet  MATH  Google Scholar 

  8. Capietto, A., Mawhin, J. and Zanolin, F., Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc. 329 (1992), 41–72.

    Article  MathSciNet  MATH  Google Scholar 

  9. Capietto, A., Mawhin, J. and Zanolin, F., A continuation approach to superlinear periodic boundary value problems, J. Differential Equations 88 (1990), 347–395.

    Article  MathSciNet  MATH  Google Scholar 

  10. Capietto, A., Mawhin, J. and Zanolin, F., Periodic solutions of some superlinear functional differential equations, in Intern. Symposium on Functional-Differential Equations (Kyoto, 1990), World Scientific, Singapore, 1991, 19–31.

    Google Scholar 

  11. Capietto, A., Mawhin, J. and Zanolin, F., Boundary value problems for forced superlinear second order ordinary differential equations, in Sim. College de France, vol. 12, Longman, Harlow, 1994, 55–64. to appear.

    Google Scholar 

  12. Capietto, A., Mawhin, J. and Zanolin, F., A continuation theorem for periodic boundary value problems with oscillatory nonlinearities, Nonlinear Differential Equations and Applications, to appear.

    Google Scholar 

  13. Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  14. Ding, T., An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance, Proc. Amer. Math. Soc. 86 (1982), 47–54.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, T. and Ding, W., Resonance problem for a class of Duffing’s equations, Chin. Ann. of Math. 6-B (1985), 427–432.

    Google Scholar 

  16. Ding, T., Iannacci, R. and Zanolin, F., Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations 105 (1993), 364–409.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding, T. and Zanolin, F., Time-maps for the solvability of periodically perturbed nonlinear Duffing equations, Nonlinear Analysis, TMA 17 (1991), 635–653.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dolph, C.L., Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc. 66 (1949), 289–307.

    Article  MathSciNet  MATH  Google Scholar 

  19. Drazin, P.G., Nonlinear Systems, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  20. Fabry, C. and Habets, P., Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math. 60 (1993), 266–276.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fonda, A. and Zanolin, F., On the use of time-maps for the solvability of nonlinear boundary value problems, Arch. Math. 59 (1992), 245–259.

    Article  MathSciNet  MATH  Google Scholar 

  22. Fučik, S., Solvability of Nonlinear Equations and Boundary Value Problems, Reidel, Dordrecht, 1980.

    MATH  Google Scholar 

  23. Furi, M. and Pera, M.P., Co-bifurcating branches of solutions of nonlinear eigenvalue problems in Banach spaces, Ann. Mat. Pura Appl. 135 (1983), 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  24. Furi, M. and Pera, M.P., The forced spherical pendulum does have forced oscillations, in Delay Differential Equations and Dynamical Systems, (Claremont 1990), Lecture Notes in Math. 1475, Springer Verlag, Berlin, 1991, 176–183.

    Chapter  Google Scholar 

  25. Furi, M. and Pera, M.P., On the notion of winding number for closed curves and applications to forced oscillations on even dimensional spheres, Boll. Un. Mat. Itll. (7) 7-A (1993), 397–407.

    MathSciNet  Google Scholar 

  26. Hassan, H.S., On the set of periodic solutions of differentiel equations of Riccati type, Proc. Edinburgh Math. Soc. 27 (1984), 195–208.

    MathSciNet  MATH  Google Scholar 

  27. Henrard, M., Degré topologique et existence d’une infinite de solutions d’un probleme aux limites pour une equation singuliere, Portugaliae Math., to appear.

    Google Scholar 

  28. Henrard, M., Duality theorems for functional differential equations and applications to superlinear problems, Differential Equations Dynamical Systems, to appear.

    Google Scholar 

  29. Kaczynski, T. and Srzednicki, R., Periodic solutions of certain planar rational ordinary differential equations with periodic coefficients, Differential Integral Equations 7 (1994), 37–47.

    MathSciNet  MATH  Google Scholar 

  30. Krasnosel’skii, A.M., Krasnosel’skii, M.A. and Mawhin, J., On some conditions for existence of forced periodic oscillations, Differential Integral Equations 5 (1992), 1267–1273.

    MathSciNet  Google Scholar 

  31. Krasnosel’skii, A.M., Krasnosel’skii, M.A., Mawhin, J. and Pokrovskii A.V., Generalized guiding functions in a problem of high frequency forced oscillations, Nonlinear Anal. 22 (1994), 1357–1371.

    Article  MathSciNet  Google Scholar 

  32. Krasnosel’skii, M.A., The Operator of Translation along the Trajectories of Differential Equations, Nauka, Moscow, 1966 (Russian); english translation: American Math. Soc., Translations of math. Monographs, vol. 19, Providence, 1968.

    Google Scholar 

  33. Krasnosel’skii, M.A. and Perov, A.I., On a certain principle for the existence of bounded, periodic and almost periodic solutions of systems of ordinary differential equations, Dokl. Akad. Nauk SSSR 123 (1958), 235–238 (Russian).

    MathSciNet  MATH  Google Scholar 

  34. Krasnosel’skii, M.A. and Perov, A.I., Some criteria for existence of periodic solutions of a system of ordinary differential equations, in Proc. Intern. Symp. Nonlinear Oscillations, vol. II, Izdat Akad. Nauk Ukr.SSR, Kiev, 1963 (Russian).

    Google Scholar 

  35. Krasnosel’skii, M.A. and Strygin, V.V., Some criteria for the existence of periodic solutions of ordinary differential equations, Dokl. Akad. Nauk SSSR 156 (1964), 1022–1024 (Russian); english translation: Soviet Math. Dokl. 5 (1964), 763–766.

    MathSciNet  Google Scholar 

  36. Krasnosel’skii, M.A. and Zabreiko P.P., Geometrical Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (Russian); english translation: Springer, Berlin, 1984.

    Book  Google Scholar 

  37. Kurzweil, J., Ordinary Differential Equations, Elsevier, Amsterdam, 1986.

    MATH  Google Scholar 

  38. Lakshmikantham, V. and Leela, S., Differential and Integral Inequalities, Theory and Applications, Academic Press, New York, 1969.

    MATH  Google Scholar 

  39. Leach, D.E., On Poincare’s perturbation theorem and a theorem of W.S. Loud, J. Differential Equations 7 (1970), 34–53.

    Article  MathSciNet  MATH  Google Scholar 

  40. Leray, J. and Schauder, J., Topologie et equations fonctionnelles, Ann. Sci. Ecole Normale Sup. (3) 51 (1934), 45–78.

    MathSciNet  Google Scholar 

  41. Lloyd, N.G., On a class of differential equations of Riccati type, J. London Math. Soc. (2) 10 (1975), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  42. Loud, W.S., Periodic solutions of nonlinear differential equations of Duffing type, in Proc. United States — Japan Seminar on Differential and Functional Equations, Benjamin, New York, 1967, 199–224.

    Google Scholar 

  43. Manásevich, R., Mawhin, J. and Zanolin, F., Hölder inequality and periodic solutions of some planar polynomial differential equations with periodic coefficients, in Inequalities and Applications, WSSIAA vol. 3, World Scientific, Singapore, 1994, 459–466.

    Google Scholar 

  44. Manásevich, R., Mawhin, J. and Zanolin, F., Periodic solutions of complex-valued differential equations and systems with periodic coefficients, J. Differential Equations, to appear.

    Google Scholar 

  45. Martelli, M., Continuation principles and boundary value problems, in Topological Methods for Ordinary Differential Equations, Lecture Notes in Math. 1537, Springer, Berlin, 1993, 32–73.

    Chapter  Google Scholar 

  46. Mawhin, J., Equivalence theorems for nonlinear operators and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610–636.

    Article  MathSciNet  MATH  Google Scholar 

  47. Mawhin, J., Recent trends in nonlinear boundary value problems, in VII Intern. Konferenz uber nichtlineare Schwingungen (Berlin 1975), Band I.2, Abhandlungen der AdW, Akademie Verlag, Berlin, 1977, 51–70.

    Google Scholar 

  48. Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Reg. Conf. in Math., No 40, American Math. Soc., Providence, 1979.

    MATH  Google Scholar 

  49. Mawhin, J., Topological degree and boundary value problems for nonlinear differential equations, in Topological Methods for Ordinary Differential Equations, Lecture Notes in Math. 1537, Springer, Berlin, 1993, 74–142.

    Chapter  Google Scholar 

  50. Mawhin, J., Periodic solutions of some planar non-autonomous polynomial differential equations, Differential and Integral Equations 7 (1994), 1055–1061.

    MathSciNet  MATH  Google Scholar 

  51. Mawhin, J. and Zanolin, F., A continuation approach to fourth order superlinear periodic boundary value problems, Topological Methods in Nonlinear Anal. 2 (1993), 55–74.

    MathSciNet  MATH  Google Scholar 

  52. Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Institute, New York, 1973–74.

    Google Scholar 

  53. Opial, Z., Sur les solutions periodiques de l’equation differentielle x” + g(x) = p(t), Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 8 (1960), 151–156.

    MathSciNet  MATH  Google Scholar 

  54. Opial, Z., Sur les periodes des solutions de l’equation differentielle x” + g(x) = 0, Ann. Polon. Math. 10 (1961), 49–72.

    MathSciNet  MATH  Google Scholar 

  55. Qian, D., Time-maps and Duffing equations across resonance, Science in China, to appear.

    Google Scholar 

  56. Rabinowitz, P., Some global results for nonlinear eigenvalue problem, J. Functional Analysis 7 (1971), 487–513.

    Article  MathSciNet  MATH  Google Scholar 

  57. Rabinowitz, P., Global theorems for nonlinear eigenvalue problems and applications, in Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, 11–36.

    Google Scholar 

  58. Rothe, E., A relation between the type number of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr. 4 (1950-51), 12–27.

    MathSciNet  Google Scholar 

  59. Rouche, N. and Mawhin, J., Equations differentielles ordinaires, vol. 2, Masson, Paris, 1973 (French); english translation: Ordinary Differential Equations. Stability and Periodic Solutions, Pitmann, Boston, 1980.

    Google Scholar 

  60. Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983.

    Book  MATH  Google Scholar 

  61. Srzednicki, R., Periodic and bounded solutions in blocks for time-periodic non-autonomous ordinary differential equations, J. Nonlinear Anal., TMA 22 (1994), 707–737.

    Article  MathSciNet  MATH  Google Scholar 

  62. Srzednicki, R., On periodic solutions of planar polynomial differential equations with periodic coefficients, J. Differential Equations, 114 (1994), 77–100.

    Article  MathSciNet  MATH  Google Scholar 

  63. Srzednicki, R., A Geometric Method for the Periodic Problem in Ordinary Differential Equations, Seminaire d’analyse moderne No. 22, Université de Sherbrooke, 1992.

    MATH  Google Scholar 

  64. Thews, K., Der Abbildungsgrad von Vektorfelden zu stabilen Ruhelagen, Arch. Math. (Basel), 52 (1989), 71–74.

    Article  MathSciNet  MATH  Google Scholar 

  65. Thews, K., On a topological obstruction to regular forms of stability, J. Nonlinear Anal. 22 (1994), 347–351.

    Article  MathSciNet  MATH  Google Scholar 

  66. Villari, G., Contributi alio studio dell’esistenza di soluzioni periodiche peri sistemi di equazioni differenziali ordinarie, Ann. Mat. Pura Appl. (4) 69 (1965), 171–190.

    Article  MathSciNet  MATH  Google Scholar 

  67. Wang, D., On the existence of 2π-periodic solutions of differential equation x” + g(x) = p(t), Chinese Ann. of Math. 5-A (1984), 61–72 (Chinese); english summary in: Proc. of the 1983 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing 1986; pp. 523–525.

    Google Scholar 

  68. Zeidler, E., Nonlinear Functional Analysis, vol. I, Springer, New York, 1986.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mawhin, J. (1995). Continuation theorems and periodic solutions of ordinary differential equations. In: Granas, A., Frigon, M., Sabidussi, G. (eds) Topological Methods in Differential Equations and Inclusions. NATO ASI Series, vol 472. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0339-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0339-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4150-8

  • Online ISBN: 978-94-011-0339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics