Skip to main content

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 213))

  • 1206 Accesses

Abstract

The most successful developments in mathematical physics in Germany were the various derivations from fundamental principles of Michael Faraday’s electromagnetic induction law of 1831.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Hoppe [1928], 553.

    Google Scholar 

  2. Smith & Wise [1989] 446, 661.

    Google Scholar 

  3. Whittaker[1951], 206.

    Google Scholar 

  4. Helmholtz [1882] Über die Erhaltung der Kraft. Eine physikalische Abhandlung, 12–75, 62.

    Google Scholar 

  5. Whittaker [1951], 218.

    Google Scholar 

  6. Hoppe [192]), 590–592; Whittaker [1951], 203.

    Google Scholar 

  7. Helmholtz [1882] Über die Theorie der Elektrodynamik, 634–645, 639.

    Google Scholar 

  8. «Die entstehenden und vergehenden Componenten dieser Polarisation wurden den Strom constituiren der durch das astatische Nadelpaar angezeigt wird» (Helmholtz [1882], 797). Thomson J.J. [1881] attributed the magnetic effect of moving electrostatic charges to the continuous alteration of the electric field in the surrounding medium, or, in the language of Maxwell, to the displacement current. Whittaker [1951], 306–307.

    Google Scholar 

  9. Helmholtz [1869] 429, 531.

    Google Scholar 

  10. Rosenfeld [1956] 1636–1637. D’Agostino [1996] 1–51.

    Google Scholar 

  11. Simpson [1966] 411–413, 416.

    Google Scholar 

  12. Maxwell [1954] Vol. 1, 451–452 (§ 326), 487–488 (§ 355).

    Google Scholar 

  13. Maxwell [1954] Vol.1, 438–440 (§ 790).

    Google Scholar 

  14. Maxwell [1954] Vol. 2, 139.

    Google Scholar 

  15. Susskind [1964] 32–42.

    Google Scholar 

  16. Whittaker [1951] 323.

    Google Scholar 

  17. Smith & Wise [1989] 455–457. As an evidence of the remarkable contrast between Thomson’s and Maxwell’s views on the propagation in wires, it is worthy to notice that Thomson opposed his telegraph theory to Maxwell’s equations as “measurable” is opposed to“ metaphysical”(Smith & Wise [1989] 454).

    Google Scholar 

  18. D’Agostino (1975] 273–276: Buchwald (1994) Appendix 13,“ Propagation in Helmholtz’s Electrodynamics”, 385–388. See also: letter from G.F. Fitzgerald to W. Thomson, April 25, 1885 (Smith & Wise [1989] 459).

    Google Scholar 

  19. Hertz, “From Herr Wilhelm von Bezold’s Paper: Researches on the Electric Discharge-Preliminary Communication”, in: Hertz [1962] 54–62, 55.

    Google Scholar 

  20. Maxwell [1954] Vol.2, 448–449.

    Google Scholar 

  21. Rosenfeld [1956] 1635.

    Google Scholar 

  22. Woodruff [1962] 439–459.

    Google Scholar 

  23. Heimann [1970] 171–213.

    Google Scholar 

  24. Bromberg [1967].

    Google Scholar 

  25. Helmholtz [1870]b).

    Google Scholar 

  26. Helmholtz [1870] a) 567. In this paper I use a modern vectorial notation throu ghout in place of the original coordinate notation. Here vectors are indicated by the x-component in the original text. The meaning of the symbols is indicated in eacch section separately.

    Google Scholar 

  27. Helmholtz [1870] a), 568.

    Google Scholar 

  28. Helmholtz [1870] a), 611–612.

    Google Scholar 

  29. Helmholtz [1870] a), 625.

    Google Scholar 

  30. Helmholtz [1870] a); Helmholtz [1881] 724–725.

    Google Scholar 

  31. Helmholtz [1870] a) 556.

    Google Scholar 

  32. Helmholtz [1870] a) 614.

    Google Scholar 

  33. Helmholtz [187]) a) 627.

    Google Scholar 

  34. Elkana [1970] 282. Among others, Elkana examines Helmholtz’s conception of the relation between force and matter.

    Google Scholar 

  35. Helmholtz [1870] a) 556–557.

    Google Scholar 

  36. Helmholtz [1881] 819–820.

    Google Scholar 

  37. Poincaré [1890] Chapter 5.

    Google Scholar 

  38. Duhem [1902] 225.

    Google Scholar 

  39. Rosenfeld [1956] 1665.

    Google Scholar 

  40. Koenigsberger [1965] 293.

    Google Scholar 

  41. Helmholtz [1982] 629–635, 629.

    Google Scholar 

  42. Helmholtz [1982] 634.

    Google Scholar 

  43. Helmholtz [1982] 774–790, 780.

    Google Scholar 

  44. Helmholtz [1982] 791–797, 791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

D’Agostino, S. (2000). German Electrodynamics in the 1870’s. In: A History of the Ideas of Theoretical Physics. Boston Studies in the Philosophy of Science, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9034-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9034-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0244-1

  • Online ISBN: 978-94-010-9034-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics