Skip to main content

Regulation of cell death in flower petals

  • Chapter
Programmed Cell Death in Higher Plants

Abstract

The often rapid and synchronous programmed death of petal cells provides a model system to study molecular aspects of organ senescence. The death of petal cells is preceded by a loss of membrane permeability, due in part to increases in reactive oxygen species that are in turn related to up-regulation of oxidative enzymes and to a decrease in activity of certain protective enzymes. The senescence process also consists of a loss of proteins caused by activation of various proteinases, a loss of nucleic acids as nucleases are activated, and enzyme-mediated alterations of carbohydrate polymers. Many of the genes for these senescence-associated enzymes have been cloned. In some flowers, the degradative changes of petal cells are initiated by ethylene; in others, abscisic acid may play a role. External factors such as pollination, drought and temperature stress also affect senescence, perhaps by interacting with hormones normally produced by the flowers. Signal transduction may involve G-proteins, calcium activity changes and the regulation of protein phosphorylation and dephosphorylation. The efficacy of the floral system as well as the research tools now available make it likely that important information will soon be added to our knowledge of the molecular mechanisms involved in petal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aida, R., Yoshida, T., Ichimura, K., Goto, R. and Shibata, M. 1998. Extension of flower longevity in transgenic torenia plants incorporating ACC oxidase transgene. Plant Sci. 138: 91–101.

    Article  CAS  Google Scholar 

  • Asada, K. 1992. Ascorbate peroxidase — a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85: 235–241.

    Article  CAS  Google Scholar 

  • Ashman, T.-L. and Schoen, D.J. 1994. How long should flowers live? Nature 371: 788–791.

    Article  CAS  Google Scholar 

  • Ashman, T.-L. and Schoen, D.J. 1997. The cost of floral longevity in Clarkia tembloriensis: an experimental investigation. Evol. Ecol. 11:289–300.

    Article  Google Scholar 

  • Bachmair, A., Becker, F., Masterson, R.V. and Schell J. 1990. Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant. EMBO J. 9: 4543–4549.

    PubMed  CAS  Google Scholar 

  • Bartoli, CG., Simontacchi, M., Guiamet, J., Montaldi, E. and Puntarulo, S. 1995. Antioxidant enzymes and lipid peroxidation during aging of Chrysanthemum morifolium RAM petals. Plant Sci. 104: 161–168.

    Article  CAS  Google Scholar 

  • Bartoli, C.G., Simontacchi, M., Montaldi, E. and Puntarulo, S. 1996. Oxidative stress, antioxidant capacity and ethylene production during ageing of cut carnation (Dianthus caryophyllus) petals. J. Exp. Bot. 47: 595–601.

    Article  CAS  Google Scholar 

  • Bartoli, C.G., Simontacchi, M., Montaldi, E. and Puntarulo, S. 1997. Oxidants and antioxidants during ageing of chrysanthemum petals. Plant Sci. 129: 157–165.

    Article  CAS  Google Scholar 

  • Baumgartner, B., Kende, H. and Matile, P. 1975. Ribonuclease in senescing morning glory. Purification and demonstration of de novo synthesis. Plant Physiol. 55: 734–737.

    Article  PubMed  CAS  Google Scholar 

  • Beja-Tal, S. and Borochov, A. 1994. Age-related changes in biochemical and physical properties of carnation petal plasma membranes. J. Plant Physiol. 143: 195–199.

    Article  CAS  Google Scholar 

  • Beja-Tal, S., Borochov, A., Gindin, E. and Mayak, S. 1995. Transient water stress in cut carnation flowers: effects of cycloheximide. Scient. Hort. 64: 167–175.

    Article  Google Scholar 

  • Bieleski, R.L. 1993. Fructan hydrolysis drives petal expansion in the ephemeral daylily flower. Plant Physiol. 103: 213–219.

    PubMed  CAS  Google Scholar 

  • Bieleski, R.L. 1995. Onset of phloem export from senescent petals of daylily. Plant Physiol. 109: 557–565.

    PubMed  CAS  Google Scholar 

  • Bieleski, R.L. and Reid, M.S. 1992. Physiological changes accompanying senescence in the ephemeral daylily flower. Plant Physiol. 98: 1042–1049.

    Article  PubMed  CAS  Google Scholar 

  • Blank, A. and McKeon, T.A. 1991. Expression of three RNase activities during natural and dark-induced senescence of wheat leaves. Plant Physiol. 97: 1409–1413.

    Article  PubMed  CAS  Google Scholar 

  • Borochov, A. and Woodson, W.R. 1989. Physiology and biochemistry of flower petal senescence. Hort. Rev. 11: 15–43.

    CAS  Google Scholar 

  • Borochov, A., Cho, M.H. and Boss, W.F. 1994. Plasma membrane lipid metabolism of petunia petals during senescence. Physiol. Plant 90: 279–284.

    Article  CAS  Google Scholar 

  • Borochov, A., Spiegelstein, H. and Philosoph-Hadas, S. 1997. Ethylene and flower petal senescence: interrelationship with membrane lipid catabolism. Physiol. Plant. 100: 606–612.

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston, V. 1997. The molecular biology of leaf senescence. J. Exp. Bot. 48: 181–199.

    Article  Google Scholar 

  • Buchanan-Wollaston, V. and Ainsworth, CA. 1997. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol. Biol. 33: 821–834.

    Article  PubMed  CAS  Google Scholar 

  • Bui, A.Q. and O’Neill, S.D. 1998. Three 1-aminocyclopropane-1-carboxylate-synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol. 116: 419–428.

    Article  PubMed  CAS  Google Scholar 

  • Cabello-Hurtado, F., Batard, Y., Salaun, J.P., Durst, F., Pinot, F. and Werck-Reichart, D. 1998. Cloning, expression in yeast and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids. J. Biol. Chem. 273: 7260–7267.

    Article  PubMed  CAS  Google Scholar 

  • Callis, J. 1995. Regulation of protein degradation. Plant Cell 7: 845–857.

    PubMed  CAS  Google Scholar 

  • Celikel, EG. and van Doom, W.G. 1995. Solute leakage, lipid peroxidation and protein degradation during senescence of iris tepals. Physiol. Plant. 94: 515–521.

    Article  CAS  Google Scholar 

  • Clark, D.G., Richards, C., Hilioti, Z., Lind-Iversen, S. and Brown, K. 1997. Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium × hortorum LH Bailey). Plant Mol. Biol. 34: 855–865.

    Article  PubMed  CAS  Google Scholar 

  • Courtney, S.E., Rider, C.C. and Stead, A.D. 1994. Changes in protein ubiquitination and the expression of ubiquitin-encoding transcripts in daylily petals during floral development and senescence. Physiol. Plant. 91: 196–204.

    Article  CAS  Google Scholar 

  • Cryns, V. and Yuan, J. 1998. Proteases to die for. Genes Dev. 12: 1551–1570.

    Article  PubMed  CAS  Google Scholar 

  • del Pozo, O. and Lam, E. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8: 1129–1132.

    Article  PubMed  Google Scholar 

  • del Rio, L.A., Palma, J.M., Sandalio, L.M., Corpas, F.J., Pastori, G. M., Bueno, P. and Lopez-Huertas, E. 1996. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem. Soc. Trans. 24: 434–438.

    PubMed  Google Scholar 

  • del Rio, L.A., Pastori, G.M., Palma, J.M., Sandalio, L.M., Sandalio, F., Sevilla, F., Corpas, F.J., Jimenez, A., Lopez-Huertas, E. and Hernandez, J.A. 1998. The activated oxygen role of peroxisomes in senescence. Plant Physiol. 116: 1195–1200.

    Article  PubMed  Google Scholar 

  • de Vetten, N. and Huber, D.J. 1990. Cell wall changes during the expansion and senescence of carnation (Dianthus caryophyllus) petals. Physiol. Plant. 78: 447–454.

    Article  Google Scholar 

  • Do, Y.-Y. and Huang, P.L. 1997. Gene structure of PAC01, a petal senescence-related gene from Phalaenopsis encoding peroxisomal acyl-CoA oxidase homolog. Biochem. Mol. Biol. Int. 41: 609–617.

    PubMed  CAS  Google Scholar 

  • Evans, P.T. and Malmberg, R.L. 1989. Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 235–269.

    Article  CAS  Google Scholar 

  • Faragher, J.D., Wachtel, E. and Mayak, S. 1987. Changes in the physical state of membrane lipids during senescence of rose petals. Plant Physiol. 83: 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Garbarino, J.E., Oosumi, T. and Belknap, W.R. 1995. Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol. 109: 1371–1378.

    Article  PubMed  CAS  Google Scholar 

  • Garello, G., Menard, C., Dansereau, B. and LePage-Degivry, M.T. 1995. The influence of light quality on rose flower senescence: involvement of abscisic acid. Plant Growth Regul. 16: 135–139.

    Article  CAS  Google Scholar 

  • Green, P.J. 1994. The ribonucleases of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 421–445.

    Article  CAS  Google Scholar 

  • Griffiths, CM., Hosken, S.E., Oliver, D., Chojecki, J. and Thomas, H. 1997. Sequencing, expression pattern and RFLP mapping of a senescence-enhanced cDNA from Zea mays with high homology to oryzain γ and aleurain. Plant Mol. Biol. 34: 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero, C., de la Calle, M., Reid, M.S. and Valpuesta, V. 1998. Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Mol. Biol. 36: 656–671.

    Article  Google Scholar 

  • Halevy, A.H. 1998. Recent advances in postharvest physiology of flowers. J. Korean Soc. Hort. Soc. 39: 652–655.

    CAS  Google Scholar 

  • Halevy, A.H., Porat, R., Spiegelstein, H., Borochov, A., Botha, L. and Whitehead, C.S. 1996. Short-chain fatty acids in the regulation of pollination-induced ethylene sensitivity of Phalaenopsis flowers. Physiol. Plant. 97: 469–474.

    Article  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford, UK, pp. 450–499.

    Google Scholar 

  • He, C.-J., Morgan, P.W. and Drew, M.C. 1996. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol. 112: 463–472.

    PubMed  CAS  Google Scholar 

  • Huang, F.-Y., Philosoph-Hadas, S., Meir, S., Callahan, D.A., Sabato, R., Zelcer, A. and Hepler, P.K. 1997. Increases in cytosolic Ca2+ in parsley mesophyll cells correlated with leaf senescence. Plant Physiol. 115: 51–60.

    PubMed  CAS  Google Scholar 

  • Ichimura, K. and Suto, K. 1998. Role of ethylene in acceleration of flower senescence by filament wounding in Portulaca hybrid. Physiol. Plant. 104: 603–607.

    Article  CAS  Google Scholar 

  • Itzhaki, H., Davis, J.H., Borochov, A., Mayak, S. and Pauls, K.P. 1995. Deuterium magnetic resonance studies of senescence-related changes in the physical properties of rose petal membrane lipids. Plant Physiol. 108: 1029–1033.

    PubMed  CAS  Google Scholar 

  • Itzhaki, H., Mayak, S. and Borochov, A. 1998. Phosphatidylcholine turnover during senescence of rose petals. Plant Physiol. Biochem. 36: 457–462.

    Article  CAS  Google Scholar 

  • Jacobson, M., Weil, M. and Raff, M.C 1997. Programmed cell death in animal development. Cell 88: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.L. and Woodson, W.R. 1999. Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiol. 119: 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.L., Larsen, P.B. and Woodson, W.R. 1995. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Mol. Biol. 28: 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Lanahan, M.B., Yen, H.-C., Giovannoni, J.J. and Klee, H.J. 1994. The Never Ripe mutation blocks ethylene perception in tomato. Plant Cell 6: 521–530.

    PubMed  CAS  Google Scholar 

  • Larsen, P.B., Ashworth, E.N., Jones, M.L. and Woodson, W.R. 1995. Pollination-induced ethylene in carnation. Plant Physiol. 108: 1405–1412.

    PubMed  CAS  Google Scholar 

  • Laughton, K., Raghothama, K.G., Goldsbrough, P.B. and Woodson, W.R. 1990. Regulation of senescence-related gene expression in carnation flower petals by ethylene. Plant Physiol. 93: 1370–1375.

    Article  Google Scholar 

  • Lay-Yee, M., Stead, A.D. and Reid, M.S. 1992. Flower senescence in daylily (Hemerocallis). Physiol. Plant. 86: 308–314.

    Article  CAS  Google Scholar 

  • Lee, M., Lee, S.H. and Park, K.Y 1997. Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. J. Plant Physiol. 151: 68–73.

    Article  CAS  Google Scholar 

  • LePage-Degivry, M.T., Orlandini, M., Carello, G., Barthe, P. and Gudia, 1991. Regulation of ABA levels in senescing petals of rose flowers. Plant Growth Regul. 10: 67–72.

    Article  CAS  Google Scholar 

  • Lers, A., Khalchitski, A., Lomaniec, E., Burd, S. and Green, P.J. 1998. Senescence-induced RNases in tomato. Plant Mol. Biol. 36: 439–449.

    Article  PubMed  CAS  Google Scholar 

  • Leshem, Y., Halevy, A.H. and Frenkel, C. 1986. Process and control of plant senescence. Dev. Crop Sci. 8: 142–161.

    Article  Google Scholar 

  • Matile, P. and Winkenbach, F. 1971. Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory. J. Exp. Bot. 22: 759–771.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., Thompson, J.E. and Ghosh, S. 1998. The fate of ribulose-l,5-bisphosphate carboxylase subunits during development of carnation petals. Plant Physiol. Biochem. 36: 835–841.

    Article  CAS  Google Scholar 

  • Meyer, R.C., Goldsbrough, P.B. and Woodson, W.R. 1991. An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione S-transferases. Plant Mol. Biol. 17:277–281.

    Article  PubMed  CAS  Google Scholar 

  • Michael, M.Z., Savin, K.W., Baudinette, S.C., Graham, M.W., Chandler, S.F., Lu, C.-Y., Caesar, C., Gautrais, I., Young, R., Nugent, C.D., Stevenson, K.R., O’Connor, E.L.-J., Cobbett, C.S., Cornish, E.C. 1993. Cloning of ethylene biosynthetic genes involved in petal senescence of carnation and petunia, and their antisense expression in transgenic plants. In: J.C Pech, A. Latche and C. Balague (Eds.) Cellular and Molecular Aspects of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 298–303.

    Google Scholar 

  • Midoh, N., Saijou, Y., Matsumoto, K. and Iwata, M. 1996. Effects of 1,1-dimethyl-4-(phenylsulfonyl) semicarbazide (DPSS) on carnation flower longevity. Plant Growth Regul. 20: 195–199.

    Article  CAS  Google Scholar 

  • Mittler, R. and Lam, E. 1995a. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7: 1951–1962.

    PubMed  CAS  Google Scholar 

  • Mittler, R. and Lam, E. 1995b. In situ detection of nDNA fragmentation during the differentation of tracheary elements in higher plants. Plant Physiol. 108: 489–493.

    PubMed  CAS  Google Scholar 

  • Mittler, R., Shulaev, V., Seskar, M. and Lam, E. 1996. Inhibition of programmed cell death in tobacco plants during pathogen-induced hypersensitive response at low oxygen pressure. Plant Cell 8: 1991–2001.

    PubMed  CAS  Google Scholar 

  • Mutlu, A. and Gal, S. 1999. Plant aspartic proteinases: enzymes on the way to a function. Physiol. Plant. 105: 569–576.

    Article  CAS  Google Scholar 

  • O’Brien, I.E.W., Baguley, B.C., Murray, B.G., Morris, B.A.M. and Ferguson, I.B. 1998. Early stages of the apoptotic pathway in plant cells are reversible. Plant J. 13: 803–814.

    Article  Google Scholar 

  • O’Neill, S.D. 1997. Pollination regulation of flower development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 547–574.

    Article  PubMed  Google Scholar 

  • O’Neill, S.D., Nadeau, J.A., Zhang, X.S., Bui, A.Q. and Halevy, A.H. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419–432.

    PubMed  Google Scholar 

  • Orlandini, M., Arene, L. and LePage-Degivry, M.T. 1991. The relationship between petal water potential and levels of abscisic acid in rose flower. Acta. Hort. 298: 161–163.

    Google Scholar 

  • Orzaez, D. and Granell, A. 1997a. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant J. 11: 137–144.

    Article  CAS  Google Scholar 

  • Orzaez, D. and Granell, A. 1997b. The plant homologue of the defender against apoptotic death gene is down-regulated during senescence of flower petals. FEBS Lett. 404: 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Orzaez, D., Blay, R. and Granell, A. 1999. Programme of senescence in petals and carpels of Pisum sativum L. flowers and its control by ethylene. Planta 208: 220–226.

    Article  PubMed  CAS  Google Scholar 

  • Paliyath, G. and Droillard, M.J. 1992. The mechanisms of membrane deterioration and disassembly during senescence. Plant Physiol. Biochem. 30: 789–812.

    CAS  Google Scholar 

  • Panavas, T. and Rubinstein, B. 1998. Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci. 133: 125–138.

    Article  CAS  Google Scholar 

  • Panavas, T., Reid, P.D. and Rubinstein, B. 1998. Programmed cell death of daylily petals: activities of wall-based enzymes and effects of heat shock. Plant Physiol. Biochem. 36: 379–388.

    Article  CAS  Google Scholar 

  • Panavas, T., Pikula, A., Reid, P.D., Rubinstein, B. and Walker, E.L. 1999. Identification of senescence-associated genes from daylily petals. Plant Mol. Biol. 40: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Park, K.Y., Drory, A. and Woodson, W.R. 1992. Molecular cloning of a 1-aminocyclopropane-1-carboxylase synthase from senescing carnation flower petals. Plant Mol. Biol. 18: 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Payton, S., Fray, R.G., Brown, S. and Grierson, D. 1996. Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Mol. Biol. 31: 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, H.L. Jr. and Kende, H. 1980. Structural changes in flowers of Ipomea tricolor during flower opening and closing. Protoplasma 102: 199–215.

    Article  Google Scholar 

  • Pinedo, M.L., Goicoechea, S.M., Lamattina, L. and Conde, R.D. 1996. Estimation of ubiquitin and ubiquitin mRNA content in dark senescing wheat leaves. Biol. Plant. 38: 321–328.

    Article  CAS  Google Scholar 

  • Podd, L.A. and van Staden, J. 1999. Is acetaldehyde the causal agent in the retardation of carnation flower senescence by ethanol? J. Plant Physiol. 154: 351–354.

    Article  CAS  Google Scholar 

  • Porat, R., Borochov, A. and Halevy, A.H. 1993. Enhancement of petunia and Dendrobium flower senescence by jasmonic acid methyl ester is via the promotion of ethylene production. Plant Growth Regul. 13: 297–301.

    Article  CAS  Google Scholar 

  • Porat, R., Borochov, A. and Halevy, A.H. 1994. Pollination-induced senescence in Phalaenopsis petals. Relationship of ethylene sensitivity to activity of GTP-binding proteins and protein phosphorylation. Physiol. Plant. 90: 679–684.

    Article  CAS  Google Scholar 

  • Porat, R., Reuveny, Y., Borochov, A. and Halevy, A.H. 1993b. Petunia flower longevity: the role of sensitivity to ethylene. Physiol. Plant. 89: 291–294.

    Article  CAS  Google Scholar 

  • Porat, R., Reiss, N., Atzorn, R., Halevy, A.H. and Borochov, A. 1995. Examination of the possible involvement of lipoxygenase and jasmonates in pollination-induced senescence of Phalaenopsis and Dendrobium orchid flowers. Physiol. Plant. 94: 205–210.

    Article  CAS  Google Scholar 

  • Porat, R., Nadeau, J.A., Kirby, J.A., Sutter, E.G. and O’Neill, S.D. 1998. Characterization of the primary pollen signal in the post pollination syndrome of Phalaenopsis flowers. Plant Growth Regul. 24: 109–117.

    Article  CAS  Google Scholar 

  • Reid, M.S. and Wu, M.-J. 1992. Ethylene and flower senescence. Plant Growth Regul. 11: 37–43.

    Article  CAS  Google Scholar 

  • Rottman, W.H., Peter, G.F., Oeller, P.W., Keller, J.A., Shen, N.F., Nagy, B.P., Taylor, L.P., Campbell, A.D. and Theologis, A. 1991. 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J. Mol. Biol. 222: 937–961.

    Article  Google Scholar 

  • Scandalios, J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7–12.

    PubMed  CAS  Google Scholar 

  • Serek, M., Tamari, G., Sisler, E.C. and Borochov, A. 1995. Inhibition of ethylene-induced cellular senescence symptoms by 1-methylcyclopropene, a new inhibitor of ethylene action. Physiol. Plant. 94: 229–232.

    Article  CAS  Google Scholar 

  • Shykoff, J.A., Bucheli, E. and Kaitz, O. 1996. Flower lifespan and disease risk. Nature 379: 779–780.

    Article  CAS  Google Scholar 

  • Siedow, J.N. 1991. Plant lipoxygenase: structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 145–188.

    Article  CAS  Google Scholar 

  • Singh, A., Evenson, K.B. and Kao, T.-H. 1992. Ethylene synthesis and floral senescence following compatible and incompatible pollinations in Petunia inflata. Plant Physiol. 99: 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Smart, C. 1994. Gene expression during leaf senescence. New Phytol. 126: 419–448.

    Article  CAS  Google Scholar 

  • Smith, M.T., Saks, Y. and van Staden, J. 1992. Ultrastructural changes in the petals of senescing flowers of Dianthus caryophyllus L. Ann. Bot. 69: 277–285.

    Google Scholar 

  • Solomon, M., Belenghi, B., Delledonne, M., Menachem, M. and Levine, A. 1999. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11: 431–443.

    PubMed  CAS  Google Scholar 

  • Song, W.C. and Brash, A.R. 1991. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science 253:781–784.

    Article  PubMed  CAS  Google Scholar 

  • Sopory, S. and Munshi, M. 1998. Protein kinases and phosphatases and their role in cellular signalling in plants. Crit. Rev. Plant Sci. 17: 245–318.

    Article  CAS  Google Scholar 

  • Stead, A.D. 1992. Pollination-induced flower senescence: a review. Plant Growth Regul 11: 13–20.

    Article  CAS  Google Scholar 

  • Stead, A.D. and van Doom 1994. Strategies of flower senescence — a review. In: R.J. Scott and A.D. Stead (Eds.) Molecular and Cellular Aspects of Plant Reproduction, Cambridge University Press, Cambridge, UK, pp. 215–238.

    Chapter  Google Scholar 

  • Stephenson, P., Collins, B.A., Reid, P.D. and Rubinstein, B. 1996. Localization of ubiquitin to differentiating vascular tissues. Am. J. Bot. 83: 140–147.

    Article  CAS  Google Scholar 

  • Stephenson, P. and Rubinstein, B. 1998. Characterization of proteolytic activity during senescence in daylilies. Physiol. Plant. 104: 463–473.

    Article  CAS  Google Scholar 

  • Sylvestre, I., Droillard, M.-J., Bureau, J.-M. and Paulin, A. 1989. Effects of the ethylene rise on the peroxidation of membrane lipids during the senescence of cut carnations. Plant Physiol. Biochem. 27: 407–413.

    CAS  Google Scholar 

  • Takahashi, T., Mu, J.-H., Gasch, A. and Chua, N.-H. 1998. Identification by PCR of receptor-like kinases from arabidopsis. Plant Mol. Biol. 37: 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X., Gomes, A.M.T.R., Bhatia, A. and Woodson, W.R. 1994. Pistil-specific and ethylene-regulated expression of 1-aminocyclopropane-1-carboxylate oxidase genes in petunia flowers. Plant Cell 6: 1227–1239.

    PubMed  CAS  Google Scholar 

  • Taylor, C.B., Bariola, P.A., DelCardayre, S.B., Raines, R.T. and Green, P.J. 1993. A senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc. Natl. Acad. Sci. USA 90: 5118–5122.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.E. 1988. The molecular basis for membrane deterioration during senescence. In: L.D. Nooden and A.C. Leopold (Eds.) Senescence and Aging in Plants, Academic Press, New York, pp. 51–83.

    Google Scholar 

  • Thompson, J.E., Froese, C.D., Hong, Y., Hudak, K.A. and Smith, M.D. 1997. Membrane deterioration during senescence. Can. J. Bot. 75: 867–879.

    Article  CAS  Google Scholar 

  • Valpuesta, V., Lange, N.E., Cuerrero, C. and Reid, M.S. 1995. Upregulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers. Plant Mol. Biol. 28: 575–582.

    Article  PubMed  CAS  Google Scholar 

  • van Altvorst, A.C. and Bovy, A.G. 1995. The role of ethylene in the senescence of carnation flowers: a review. Plant Growth Regul. 16: 43–53.

    Article  Google Scholar 

  • van Doom, W.G. 1997. Effects of pollination on floral attraction and longevity. J. Exp. Bot. 48: 1615–1622.

    Google Scholar 

  • van Doom, W.G. and Stead, A.D. 1994. The physiology of petal senescence which is not initiated by ethylene. In: R.J. Scott and A.D. Stead (Eds.) Molecular and Cellular Aspects of Plant Reproduction, Cambridge University Press, Cambridge, UK, pp. 239–254.

    Google Scholar 

  • Vardi, Y. and Mayak, S. 1989. Involvement of abscisic acid during water stress and recovery in petunia flowers. Acta. Hort. 261: 107–112.

    Google Scholar 

  • Verlinden, S. and Woodson, W.R. 1998. The physiological and molecular responses of carnation flowers to high temperature. Postharvest Biol. Techn. 4: 185–192.

    Article  Google Scholar 

  • Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579–620.

    Article  CAS  Google Scholar 

  • Vierstra, R.D. 1993. Protein degradation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 385–410.

    Article  CAS  Google Scholar 

  • Wang, H., Brandt, A.S. and Woodson, W.R. 1993. A flower senescence-related mRNA from carnation encodes a novel protein related to enzymes involved in phosphonate biosynthesis. Plant Mol. Biol. 22: 719–724.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Li, J., Bostock, R.M. and Gilchrist, D.G. 1996. Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8: 375–391.

    PubMed  CAS  Google Scholar 

  • Whitehead, C.S. 1994. Ethylene sensitivity and flower senescence. In: R.J. Scott and A.D. Stead (Eds.) Molecular and Cellular Aspects of Plant Reproduction, Cambridge University Press, Cambridge, UK, pp. 269–284.

    Chapter  Google Scholar 

  • Whitehead, C.S. and Vasiljevic, D. 1993. Role of short-chain saturated fatty acids in the control of ethylene sensitivity in senescing carnation flowers. Physiol. Plant. 88: 243–250.

    Article  CAS  Google Scholar 

  • Wiemken-Gehrig, V., Wiemken, A. and Matile, P. 1974. Cell wall breakdown in wilting flowers of Ipomea tricolor Cav. Planta 115: 297–307.

    Article  CAS  Google Scholar 

  • Willekens, H., Chamnongpol, S., Davey, M., Schrauder, M., Langebartels, C., Van Montagu, M., Inze, D. and Van Camp, W. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16: 4806–4816.

    Article  PubMed  CAS  Google Scholar 

  • Woffenden, B.J., Freeman, T.B. and Beers, E.P. 1998. Proteasome inhibitors prevent tracheary element differentiation in Zinnia mesophyll cell cultures. Plant Physiol. 118: 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Woltering, E.J. and van Doom, W.G. 1988. Role of ethylene and senescence of petals: morphological and taxonomical relationships. J. Exp. Bot. 39: 1605–1616.

    Article  CAS  Google Scholar 

  • Woltering, E.J., de Vrije, T., Harren, F. and Hoekstra, F.A. 1997. Pollination and stigma wounding: same response, different signal? J. Exp. Bot. 48: 1027–1033.

    Article  CAS  Google Scholar 

  • Woltering, E.J., Somhorst, D. and van der Veer, P. 1995. The role of ethylene in interorgan signalling during flower senescence. Plant Physiol. 109: 1219–1225.

    PubMed  CAS  Google Scholar 

  • Woltering, E.J., ten Have, A., Larsen, P.B. and Woodson, W.R. 1994. Ethylene biosynthetic genes and interorgan signalling during flower senescence. In: R.J. Scott and A.D. Stead (Eds.) Molecular and Cellular Aspects of Plant Reproduction, Cambridge University Press, Cambridge, UK, pp. 285–307.

    Chapter  Google Scholar 

  • Woodson, W.R.. 1994. Molecular biology of flower senescence in carnation. In: R.J. Scott and A.D. Stead (Eds.) Molecular and Cellular Aspects of Plant Reproduction, Cambridge University Press, Cambridge, UK, pp. 255–267.

    Chapter  Google Scholar 

  • Woodson, W.R. and Handa, A.K. 1987. Changes in protein patterns and in vivo protein synthesis during presenescence and senescence of Hibiscus petals. J. Plant Physiol. 128: 67–75.

    Article  CAS  Google Scholar 

  • Woodson, W.R., Park, K.Y., Drory, A., Larsen, P.B. and Wang, H. 1992. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiol. 99: 526–532.

    Article  PubMed  CAS  Google Scholar 

  • Young, T.E., Gallie, D.R., DeMason, D.A. 1997. Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken 2 genotypes. Plant Physiol. 115: 737–751.

    PubMed  CAS  Google Scholar 

  • Zelitch, I., Havir, E.A., McGonigle, B., McHale, N.A. and Nelson, T. 1991. Leaf catalase mRNA and catalase-protein levels in a high-catalase tobacco mutant with O2-resistant photosynthesis. Plant Physiol. 97: 1592–1595.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubinstein, B. (2000). Regulation of cell death in flower petals. In: Lam, E., Fukuda, H., Greenberg, J. (eds) Programmed Cell Death in Higher Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0934-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0934-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3797-6

  • Online ISBN: 978-94-010-0934-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics