Skip to main content

Time Dependence and (Non)commutativity of Symmetries of Evolution Equations

  • Chapter
Noncommutative Structures in Mathematics and Physics

Part of the book series: NATO Science Series ((NAII,volume 22))

  • 335 Accesses

Abstract

Nearly all known today integrable systems are homogeneous with respect to some scaling. For such systems no generality is lost in assuming the homogeneity of symmetries, master symmetries, recursion operators, etc., and this considerably simplifies their finding and study, see e.g. [1]–[10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  2. A.S. Fokas, Symmetries and integrability, Stud. Appl. Math. 77: 3 (1987), 253–299.

    MathSciNet  MATH  Google Scholar 

  3. M. Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer-Verlag, Heildelberg, 1998.

    Book  MATH  Google Scholar 

  4. B. Fuchssteiner, Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Progr. Theor. Phys. 70 (1983), 1508–1522.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. W. Oevel, A geometrical approach to integrable systems admitting time dependent invariants, in Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (Oberwolfach, 1986) (M. Ablowitz, B. Fuchssteiner, M. Kruskal, eds.), World Scientific Publishing, Singapore, 1987, pp. 108–124.

    Google Scholar 

  6. V.V. Sokolov, On the symmetries of evolution equations, Russ. Math. Surveys 43: 5 (1988), 165–204.

    Article  ADS  MATH  Google Scholar 

  7. P.J. Olver, V.V. Sokolov, Integrable evolution equations on associative algebras, Comm. Math. Phys. 193 (1998), 245–268.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J.A. Sanders and J.P. Wang, On the integrability of homogeneous scalar evolution equations, J. Differential Equations, 147 (1998), 410–434.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.H. Bilge, On the equivalence of linearization and formal symmetries as integrability tests for evolution equations, J. Phys. A: Math. Gen. 26 (1993), 7511–7519.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J.P. Wang, Symmetries and Conservation Laws of Evolution Equations, Ph.D. Thesis, Vrije Universiteit van Amsterdam, 1998.

    Google Scholar 

  11. A.V. Mikhailov, A.B. Shabat, and R.I. Yamilov, The symmetry approach to classification of nonlinear equations. Complete lists of integrable systems, Russ. Math. Surveys 42:4 (1987), 1–63.

    Article  MathSciNet  ADS  Google Scholar 

  12. A.V. Mikhailov, A.B. Shabat and V.V. Sokolov, The symmetry approach to classification of integrable equations, in What is Integrability? (V.E. Zakharov, ed.), Springer-Verlag, New York, 1991, pp. 115–184.

    Chapter  Google Scholar 

  13. A.V. Mikhailov, R.I. Yamilov, Towards classification of (2+I)-dimensional integrable equations. Integrability conditions. I, J. Phys. A: Math. Gen. 31 (1998), 6707–6715.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, D. Reidel Publishing Co., Boston, 1985.

    Book  MATH  Google Scholar 

  15. F.Kh. Mukminov, V.V. Sokolov, Integrable evolution equations with constraints, Mat. Sb.(N.S.) 133(175):3 (1987), 392–414.

    Google Scholar 

  16. V.V. Sokolov, T. Wolf, A symmetry test for quasilinear coupled systems, Inverse Problems 15 (1999), L5–L11.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M.V. Foursov, Classification of certain type integrable coupled potential KdV and modified KdV-type equations, J. Math. Phys. 41 (2000), 6173–6185.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. B. Fuchssteiner, Integrable nonlinear evolution equations with time-dependent coefficients, J. Math. Phys. 34 (1993), 5140–5158.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley & Sons, Chichester, 1993.

    Google Scholar 

  20. Symmetries and Conservation Laws for Differential Equations of Mathematical Physics (I.S. Krasil’shchik and A.M. Vinogradov, eds.), American Mathematical Society, Providence, 1999.

    Google Scholar 

  21. J.A. Cavalcante and K. Tenenblat, Conservation laws for nonlinear evolution equations, J. Math. Phys. 29 (1988), 1044–1049.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sergyeyev, A. (2001). Time Dependence and (Non)commutativity of Symmetries of Evolution Equations. In: Duplij, S., Wess, J. (eds) Noncommutative Structures in Mathematics and Physics. NATO Science Series, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0836-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0836-5_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6999-8

  • Online ISBN: 978-94-010-0836-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics