Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 30))

Abstract

The Bochner-Krall problem asks for the classification of all families of orthogonal polynomials that are also eigenfunctions of a differential operator. We survey some recent work on this problem. An important issue is to extend the problem by allowing for a doubly infinite three-term recursion relation, instead of a semi-infinite one. In this way, the problem gets connected with the associated classical orthogonal polynomials, the Darboux factorization method and the Burchnall-Chaundy theory of commutative rings of difference operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. E. Andrews, R. Askey and R. Roy, Special functions. Encyclopedia of mathematics and its applications 71, Cambridge University Press, 1999.

    Google Scholar 

  3. R. Askey and M. E. H. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc, No. 300, 1984.

    Google Scholar 

  4. R. Askey and J. Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 15–37.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bakalov, E. Horozov and M. Yakimov, General methods for constructing bispectral operators, Phys. Lett. A 222 (1996), 59–66.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Bakalov, E. Horozov and M. Yakimov, Bispectral algebras of commuting ordinary differential operators, Comm. Math. Phys. 190 (1997), 331–373.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Berest, Huygens’ principle and the bispectral problem, in: “The Bispectral Problem”, J. Harnad and A. Kasman, eds, CRM Proc. Lecture Notes 14, Amer. Math. Soc, Providence, 1998, pp. 11–30.

    Google Scholar 

  8. Ju. M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators, Transi. Math. Monographs 17, Amer. Math. Soc, Providence, 196

    Google Scholar 

  9. S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730–736.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. L. Burchnall and T. W. Chaundy, a)Commutative ordinary differential operators, Proc. London Math. Soc 21 (1923), 420–440; b) Commutative ordinary differential operators, Proc Royal Soc London (A) 118 (1928), 557-583; c) Commutative ordinary differential operators II. The identity P n = Qm, Proc. Royal Soc London (A) 134 (1932), 471-485.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. A. Chalykh, M. V. Feigin and A. P. Veselov, Multidimensional Baker-Akhiezer functions and Huygens’ principle, Comm. Math. Phys. 206 (1999), 533–566.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Darboux, Leçons sur la théorie générale des surfaces, 2e partie, Gauthier-Villars, Paris, 1889.

    MATH  Google Scholar 

  13. P. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), 267–310.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. J. Duistermaat and F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177–240.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. N. Everitt, K. H. Kwon, L. L. Littlejohn and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, J. Comput. Appl. Math., to appear.

    Google Scholar 

  16. H. Flaschka and D. McLaughlin, Some comments on Bäcklund transformations, canonical transformations and the inverse scattering method, in: “Bäcklund Transformations”, Lecture Notes in Mathematics515, Springer,Berlin, Heidelberg, New York, 1976, pp. 253–295

    Google Scholar 

  17. R. W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75 (1978), 40–42.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. A. Grün baum, The bispectral problem: an overview, this volume.

    Google Scholar 

  19. F. A. Grünbaum and L. Haine, Orthogonal polynomials satisfying differential equations: The role of the Darboux transformation, in: “Symmetries and Integrability of Difference Equations”, D. Levi, L. Vinet, and P. Winternitz, eds, CRM Proc. Lecture Notes 9, Amer. Math. Soc, Providence, 1996, pp. 143–154.

    Google Scholar 

  20. F. A. Grünbaum and L. Haine, A theorem of Bochner, revisited in: “Algebraic Aspects of lntegrable Systems”, A. S. Fokas and I. M. Gelfand, eds, Progr. Nonlinear Differential Equations 26, Birkhäuser, Boston, 1997, pp. 143–172.

    Chapter  Google Scholar 

  21. F. A. Grünbaum and L. Haine, Some functions that generalize the Askey-Wilson polynomials, Comm. Math. Phys. 184 (1997), 173–202.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. A. Grünbaum and L. Haine, Bispectral Darboux transformations: An extension of the Krall polynomials, Internat. Math. Res. Notices 1997 (No.8), 359–392.

    Google Scholar 

  23. F. A. Grünbaum and L. Haine, Associated polynomials, spectral matrices and the bispectral problem, Meth. Appl. Anal. 6(2) (1999), 209–224.

    MATH  Google Scholar 

  24. F. A. Grünbaum and L. Haine, On a q-analogue of the string equation and a generalization of the classical orthogonal polynomials, in: “Algebraic methods and q-special functions”, J. F. van Diejen and L. Vinet, eds, CRM Proc. Lecture Notes 22, Amer. Math. Soc, Providence, 1999, pp. 171–181.

    Google Scholar 

  25. F. A. Grünbaum, L. Haine and E. Horozov, On the Krall-Hermite and the Krall-Bessel polynomials, Internat. Math. Res. Notices 1997 (No. 19), 953–966.

    Google Scholar 

  26. F. A. Grünbaum, L. Haine and E. Horozov, Some functions that generalize the Krall-Laguerre polynomials, J. Comput. Appl. Math. 106 (1999), 271–297.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. A. Grünbaum and M. Yakimov, Discrete bispectral Darboux transformations from Jacobi operators, Pacific J. Math., to appear.

    Google Scholar 

  28. L. Haine, Beyond the classical orthogonal polynomials, in: “The Bispectral Problem”, J. Harnad and A. Kasman, eds., CRM Proc. Lecture Notes 14, Amer. Math. Soc, Providence, 1998, pp. 47–65.

    Google Scholar 

  29. L. Haine and P. Iliev, The bispectral property of a q-deformation of the Schur polynomials and the q-KdV hierarchy, J. Phys. A: Math. Gen. 30 (1997), 7217–7227.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Haine and P. Iliev, Commutative rings of difference operators and an adelic flag manifold, Internat. Math. Res. Notices 2000 (No.6), 281–323.

    Google Scholar 

  31. L. Haine and P. Iliev, A rational analogue of the Krall polynomials, J. Phys. A: Math. Gen. 34 (2001), 2445–2457.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Iliev, q-KP hierarchy, bispectrality and Calogero-Moser systems, J. Geom. Phys. 35 (2000), 157–182.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Infeld and T. Hull, The factorization method, Rev. Modern Phys. 23 (1951), 21–68.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. E. H. Ismail and D. R. Masson, Two families of orthogonal polynomials related to Jacobi polynomials, Rocky Mountain J. Math. 21 (1991), 359–375.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Kasman and M. Rothstein, Bispectral Darboux transformations: the generalized Airy case, Physica D 102 (1997), 159–176.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Koekoek and R. Koekoek, On a differential equation for Koornwinder’s generalized Laguerre polynomials, Proc. Amer. Math. Soc. 112(4) (1991), 1045–1054.

    MathSciNet  MATH  Google Scholar 

  37. J. Koekoek and R. Koekoek, Differential equations for generalized Jacobi polynomials, J. Comput. Appl. Math. 126 (2000), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Koekoek, Differential equations for symmetric generalized ultraspherical polynomials, Trans. Amer. Math. Soc. 345 (1994), 47–72.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. H. Koornwinder, Orthogonal polynomials with weight function (1—x)α(l + x)β] + Mδ(x + 1) + Nδ(x—1), Can. Math. Bull. 27 (1984), 205–214.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. H. Koornwinder, Compact quantum groups and q-special functions, in: “Representations of Lie groups and quantum groups”, V. Baldoni and M. A. Picardello, eds., Pitman Research Notes in Mathematics Series 311, Longman Scientific & Technical, 1994, pp. 46–128.

    Google Scholar 

  41. A. M. Krall, Orthogonal polynomials satisfying fourth order differential equations, Proc. Roy. Soc. Edinburgh Sect. A 87 (1981), 271–288.

    Article  MathSciNet  MATH  Google Scholar 

  42. H. L. Krall, Certain differential equations for the Tchebycheff polynomials, Duke Math. J. 4 (1938), 705–718.

    Article  MathSciNet  Google Scholar 

  43. H. L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, The Pennsylvania State College Studies, No.6, 1940.

    Google Scholar 

  44. I. M. Krichever, Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surveys 32 (1977), 185–214.

    Article  MATH  Google Scholar 

  45. I. M. Krichever, Algebraic curves and non-linear difference equations, Russian Math. Surveys 33 (1978), 255–256.

    Article  MathSciNet  MATH  Google Scholar 

  46. L. L. Littlejohn, The Krall polynomials: A new class of orthogonal polynomials, Quaestiones Mathematicae 5 (1982), 255–265.

    Article  MathSciNet  MATH  Google Scholar 

  47. V. B. Matveev, Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters, Lett. Math. Phys. 3 (1979), 213–216.

    Article  MathSciNet  MATH  Google Scholar 

  48. V. B. Matveev, Darboux transformation and the explicit solutions of differentialdifference and difference-difference evolution equations I, Lett. Math. Phys. 3 (1979), 217–222.

    Article  MathSciNet  MATH  Google Scholar 

  49. V. B. Matveev and M. A. Salle, Differential-difference evolution equations II: Darboux transformation for the Toda lattice, Lett. Math. Phys. 3 (1979), 425–429.

    Article  MathSciNet  MATH  Google Scholar 

  50. V. B. Matveev and M. A. Salle, Darboux transformations and Solitons, Springer Series in Nonlinear Dynamics, 1991.

    Google Scholar 

  51. D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations, in: “Proceedings of International Symposium on Algebraic Geometry”, (Kyoto Univ., Kyoto 1977), M. Nagata, ed., Kinokuniya Book-Store, Tokyo, 1978, pp. 115–153.

    Google Scholar 

  52. F. W. Nijhoff and O. A. Chalykh, Bispectral rings of difference operators, Russian Math. Surveys 54 (1999), 644–645.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Petkovšek, H. S. Wilf and D. Zeilberger, A = B, A. K. Peters, Wellesley MA, 1996.

    Google Scholar 

  54. M. Rahman, The associated classical orthogonal polynomials, this volume.

    Google Scholar 

  55. E. Schrödinger, A method of determining quantum mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish Acad. Sect. A 46 (1940), 9–16.

    MathSciNet  MATH  Google Scholar 

  56. V. Spiridonov, L. Vinet and A. Zhedanov, Bispectrality and Darboux transformations in the theory of orthogonal polynomials, in: “The Bispectral Problem”, J. Harnad and A. Kasman, eds, CRM Proc. Lecture Notes 14, Amer. Math. Soc, Providence, 1998, pp. 111–122.

    Google Scholar 

  57. P. Terwilliger, Two relations that generalize the q-Serre relations and the Dolan-Grady relations, in: “Physics and Combinatorics”, A. N. Kirillov, A. Tsuchiya, and H. Umemura, eds., World Scientific, 2001, to appear.

    Google Scholar 

  58. M. Toda, Theory of Nonlinear Lattices, Springer Series in Solid-State Sciences 20, Springer, Berlin, Heidelberg, New-York, 1981.

    Google Scholar 

  59. P. van Moerbeke and D. Mumford, The spectrum of difference operators and alge-braic curves, Acta Math. 143 (1979), 93–154.

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Wilson, Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177–204.

    MathSciNet  MATH  Google Scholar 

  61. G. Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, with an appendix by LG. Macdonald, Invent. Math. 133 (1998), 1–41.

    MATH  Google Scholar 

  62. J. Wimp, Explicit formulas for the associated Jacobi polynomials and some applications, Canad. J. Math. 39 (1987), 983–1000.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Zhedanov, A method of constructing Krall’s polynomials, J. Comput. Appl. Math. 107 (1999), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haine, L. (2001). The Bochner-Krall Problem: Some New Perspectives. In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds) Special Functions 2000: Current Perspective and Future Directions. NATO Science Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0818-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0818-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7120-5

  • Online ISBN: 978-94-010-0818-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics