Skip to main content

From the Interstellar Medium to Planetary Atmospheres via Comets

  • Chapter
Collisional Processes in the Solar System

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 261))

Abstract

Laboratory experiments on the trapping of gases by ice forming at low temperatures implicate comets as major carriers of the heavy noble gases to the inner planets. Recent work on deuterium in Comet Hale-Bopp provides good evidence that comets contain some unmodified interstellar material. However, if the sample of three comets analyzed so far is typical, the Earth’s oceans cannot have been produced by comets alone. The highly fractionated neon in the Earth’s atmosphere also indicates the importance of non-icy carriers of volatiles, as do the noble gas abundances in meteorites from Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A ’Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D.J., & Birch, P. V. 1995, The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976–1992, Icarus 118, 223–270.

    Article  ADS  Google Scholar 

  • Anders, E., & Grevesse, N. 1989, Abundances of the elements: Meteoritic and solar, Geochim. Cosmochim. Ada 53, 197–214.

    Article  ADS  Google Scholar 

  • Anders, E., & Owen, T. 1977, Mars and Earth: Origin and abundances of volatiles, Science 198, 453–465.

    Article  ADS  Google Scholar 

  • Balsiger, H., Altwegg, K., & Geiss, J. 1995, D/H and 18O/16O ratio in the hydronium ion and in neutral water from in situ ion measurements in Comet P/Halley, J. Geophys. Res. 100, 5827–5834.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Herman, B., Laufer, D., & Rappoport, M. L. 1985, Trapping and release of gases by water ice and implications for icy bodies, Icarus 63, 317–332.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Kleinfeld, I., & Kochavi, E. 1988, Trapping of gas mixtures by amorphous water ice, Phys. Rev. B. 38, 7749–7754.

    Article  ADS  Google Scholar 

  • Becker, R. H., and Pepin, R. O. 1984, The case for a martian origin of the Shergottites: nitrogen and noble gases in EETA 79001, Earth Planet. Sci. Lett. 69, 225–242.

    Article  ADS  Google Scholar 

  • Bernatowicz, T. J., Kennedy, B. M., & Podosek, F. A. 1985, Xe in glacial ice and the atmospheric inventory of noble gases, Geochim. Cosmochim. Acta 49, 2561–2564.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., et al. 1998, Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets, Icarus 133, 147–162.

    Article  ADS  Google Scholar 

  • Bogard, D. D., Hörz, F., Johnson, P. H. 1986, Shock-implanted noble gases: An experimental study with implications for the origin of Martian gases in Shergottite meteorites. LPSC XVII, J. Geophys. Res. 91, E99–E114.

    Article  ADS  Google Scholar 

  • Bogard, D. D., & Johnson, P. 1983, Martian gases in an Antarctic meteorite?, Science 221, 651–654.

    Article  ADS  Google Scholar 

  • Carr, M. H. 1986, Mars: A water-rich planet?, Icarus 56, 187–216.

    Article  ADS  Google Scholar 

  • Carr, M. H., and Wänke, H. 1992, Earth and Mars: Water inventories as clues to accre-tional histories, Icarus 98, 61–71.

    Article  ADS  Google Scholar 

  • Chyba, A. C. 1990, Impact delivery and erosion of planetary oceans in the inner solar system, Nature 343, 129–133.

    Article  ADS  Google Scholar 

  • Chyba, C, Owen, T., & Ip, W.-H. 1994, Impact delivery of volatiles and organic molecules to Earth, in Hazards Due to Comets & Asteroids ed. T. Gehrels (Tucson: Univ. Arizona Press), pp. 9–58.

    Google Scholar 

  • Craig, H., & Lupton, J. E. 1976, Primordial neon, helium, and hydrogen in oceanic basalts, Earth Planet Sci. Lett. 31, 369–385.

    Article  ADS  Google Scholar 

  • Delsemme, A. 1991, Nature and history of the organic compounds in comets: An as-trophysical view, in Comets in the Post-Halley Era, ed. R. L. Newburn, Jr., M. Neugebauer, & J. Rahe (Dordrecht: Kluwer), pp. 337–428.

    Google Scholar 

  • Drake, M. J., Swindle, T. D., Owen, T. & Musselwhite, D. L. 1994, Fractionated martian atmosphere in the nakhlites?, Meteoritics 29, 854–859.

    Article  ADS  Google Scholar 

  • Dreibus, G., & Wänke, H. 1989, Supply and loss of volatile constituents during the accretion of terrestrial planets, in Origin and Evolution of Planetary and Satellite Atmospheres, ed. S. K. Atreya, J. B. Pollack, & M. S. Matthews (Tucson: Univ. Arizona Press), pp. 268–288.

    Google Scholar 

  • Eberhardt, P., Reber, M., Krankowsky, D., & Hodges, R. R. 1995, The D/H and 18O/16O ratios in water from comet P/Halley, Astron. Astrophys. 302, 301–316.

    ADS  Google Scholar 

  • Fink, U. 1992 A new class of carbon poor comet, Science 257, 1926–1929.

    Article  ADS  Google Scholar 

  • Comet Yanaka (1998r): A new class of carbon poor comet, Science 257, 1926–1929.

    Google Scholar 

  • Geiss, J. 1988, Composition in Halley ’s comet: Clues to origin and history of cometary matter, Rev. Mod. Astron. 1, 1–27.

    Article  ADS  Google Scholar 

  • Greely, R. 1987, Release of juvenile water on Mars: Estimated amounts and timing associated with volcanism, Science 136, 688–690.

    Google Scholar 

  • Hiyagon, H. 1994, Retention of solar helium and neon in IDPs in deep sea sediment, Science 263, 1257–1259.

    Article  ADS  Google Scholar 

  • Honda, M., McDougall, I., Patterson, D., Doulgeris, A., & Claugue, D. A. 1991, Possible solar noble-gas component in Hawaiian basalts, Nature 349, 149–151.

    Article  ADS  Google Scholar 

  • Ip, W. H., & Fernandez, J. A. 1988, Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion, Icarus 74, 47–61.

    Article  ADS  Google Scholar 

  • Istomin, V. G., Grechnev, K. V., & Kochnev, V. A. 1982, Preliminary results of mass-spectrometric measurements on board the Venera 13 and Venera 14 probe, Pisma Astron. Zh. 8, 391–398.

    ADS  Google Scholar 

  • Jakosky, B. M. 1991, Mars volatile evolution: Evidence from stable isotopes, Icarus 94, 14–31.

    Article  ADS  Google Scholar 

  • Jakosky, B. M., Pepin, R. M., Johnson, R. E., & Fox, J. L. 1994, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape, Icarus 111, 271–288.

    Article  ADS  Google Scholar 

  • Jewitt, D., Matthews, H. E., Owen, T., & Meier, R. 1997, Measurements of 12C/13C, 14N/15N, and 32S/34S Ratios in Comet Hale-Bopp (C/1995 O1), Science 278, 90–93.

    Article  ADS  Google Scholar 

  • Karlsson, H. R., Clayton, R. N., Gibson, E. K., Jr., & Mayeda, T. K. 1992, Water in SNC meteorites: Evidence for a martian hydrosphere, Science 255, 1409–1411.

    Article  ADS  Google Scholar 

  • Krankoswky, D. 1991, The composition of comets, in Comets in the Post-Halley Era, ed. R. L. Newburn, Jr., M. Neugebauer, & J. Rahe (Dordrecht: Kluwer), pp. 855–879.

    Google Scholar 

  • Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., & Jennings, D. E. 1997a, High resolution spectroscopy of Mars at 3.7 and 8 µm : A sensitive search for H2O2, H2CO, HC1 and CH4, and detection of HDO, J. Geophys. Res. 102, 6524–6534.

    ADS  Google Scholar 

  • Krasnopolsky, V. A., Mumma, M. J., Abbott, M., Flynn, B. C., Meech, K. J., Yeomans, D. K., Feldman, P. D., & Cosmovici, C. B. 1997b, Detection of soft x-rays and a sensitive search for noble gases in comet Hale-Bopp (C/1995 01), Science 277, 1488.

    Article  ADS  Google Scholar 

  • Laufer, D., Kochavi, E., & Bar-Nun, A. 1987, Structure and dynamics of amorphous water ice, Phys. Rev. B 36, 9219–9227.

    Article  ADS  Google Scholar 

  • Lécluse, C, & Robert, F. 1994, Hydrogen isotope exchange reaction rates: Origin of water in the solar system, Geochim. Cosmochin. Ada 58, 2927–2940.

    Article  ADS  Google Scholar 

  • Leshin, L. A., Epstein, S., & Stolper, E. M. 1996, Hydrogen isotope geochemistry of SNC meteorites, Geochim. Cosmochim. Ada 60, 2635–2650.

    Article  ADS  Google Scholar 

  • Lunine, J. L., Engel, S., Rizk, B., & Horanyi, M. 1991, Sublimation and reformation of icy grains in the primitive solar nebula, Icarus 94, 333–343.

    Article  ADS  Google Scholar 

  • Marti, K., Kim, J. S., Thakur, A. N., McCoy, T. J., & Keil, K. 1995, Signatures of the martian atmosphere in glass of the Zagami meteorite, Science 267, 1981–1984.

    Article  ADS  Google Scholar 

  • McElroy, M. B., Kong, T. Y., & Yung, Y. L. 1997, Photochemistry and evolution of Mars ’ atmosphere: A Viking perspective, J. Geophys. Res. 82, 4379–4388.

    Article  ADS  Google Scholar 

  • McSween, H. Y., Jr. 1994, What have we learned about Mars from SNC meteorites?, Meteoritics 29, 757–779.

    Article  ADS  Google Scholar 

  • Meier, R., Owen, T., Matthews, H. E., Jewitt, D., Bockelée-Morvan, D., Biver, N., Cro-visier, J., & Gautier, D. 1998a, A Determination of the HDO/H2O Ratio in Comet C/1995 01 (Hale-Bopp), Science 279, 842–844.

    Article  ADS  Google Scholar 

  • Meier, R., Owen, T., Jewitt, D., Matthews, H. E., Senay, M., Biver, N., Bockelée-Morvan, D., Crovisier, J., & Gautier, D. 1998b, Deuterium in Comet C/1995 O1 (Hale-Bopp): Detection of DCN, Science 279, 1707–1710.

    Article  ADS  Google Scholar 

  • Melosh, H. J., & Vickery, A. M. 1989, Impact erosion of the primordial atmosphere of Mars Nature 338, 487–489.

    Article  ADS  Google Scholar 

  • Millar, T. J., Bennett, A., & Herbst, E. 1989, Deuterium fractionation in dense interstellar clouds, Astrophys. J. 340, 906–920.

    Article  ADS  Google Scholar 

  • Notesco, G., & Bar-Nun, A. 1996, Enrichment of CO over N2 by their trapping in amorphous ice and implications to Comet Halley, Icarus 122, 118–121.

    Article  ADS  Google Scholar 

  • Oro, J. 1961, Comets and the formation of biochemical compounds on the primitive Earth, Nature 190, 389–390.

    Article  ADS  Google Scholar 

  • Ott, U. 1988, Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny, Geochim. Cosmochim. Ada 52, 1937–1948.

    Article  ADS  Google Scholar 

  • Ott, U., & Begemann, F. 1985, Are all the“martian” meteorites from Mars?,Nature 317, 509–512.

    Article  ADS  Google Scholar 

  • Owen, T. 1992, The composition and early history of the atmosphere of Mars, in Mars, ed. H. H. Kieffer et al. (Tucson: Univ. Arizona Press), pp. 818–834.

    Google Scholar 

  • Owen, T. & Bar-Nun, A. 1993, Noble gases in atmospheres, Nature 361, 693–694.

    Article  ADS  Google Scholar 

  • Owen, T., & Bar Nun, A. 1995a, Comets, impacts and atmospheres, Icarus 116, 215–226.

    Article  ADS  Google Scholar 

  • Owen, T., & Bar-Nun, A. 1995b, Comets, impacts and atmospheres II, Isotopes and noble gases, in AIP Conf. Proc. 341, Volatiles in the Earth and Solar System, ed. K. Farley (New York: AIP), pp. 123–138.

    Google Scholar 

  • Owen, T., Bar-Nun, A., & Kleinfeld, I. 1991, Noble gases in terrestrial planets: Evidence for cometary impacts, in Comets in the Post-Halley Era, ed. R. L. Newburn, Jr., M. Neugebauer, & J. Rahe (Dordrecht: Kluwer), pp. 429–438.

    Chapter  Google Scholar 

  • Owen, T., Bar-Nun, A., & Kleinfeld, I. 1992, Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars,Nature 358, 43–46.

    Article  ADS  Google Scholar 

  • Owen, T., Biemann, K., Rushneck, D. R., Biller, J. E., Howarth, D. W., & LaFleur, A. L. 1977, The composition of the atmosphere at the surface of Mars, J. Geophys. Res. 82, 4635–4639.

    Article  ADS  Google Scholar 

  • Owen, T., Maillard, J. P., de Bergh, C, & Lutz, B. L. 1988, Deuterium on Mars: The abundance of HDO and the value of D/H, Science 240, 1767–1770.

    Article  ADS  Google Scholar 

  • Ozima, M., & Wada, N. 1993, Noble gases in atmospheres, Nature 361, 693.

    Article  ADS  Google Scholar 

  • Pepin, R. O. 1989, Atmospheric compositions: Key similarites and differences, in Origin and Evolution of Planetary and Satellite Atmospheres, ed. S. K. Atreya, J. B. Pollack, and M. S. Matthews (Tucson: Univ. of Arizona Press), pp. 293–305.

    Google Scholar 

  • Pepin, R. O. 1991, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles, Icarus 92, 2–79.

    Article  ADS  Google Scholar 

  • Pepin, R. O. 1994, Evolution of theMartian atmosphere, Icarus111, 289–304.

    Article  ADS  Google Scholar 

  • Robert, R., Rejon-Michel, A., & Javoy, M. 1992, Oxygen isotopic homogeneity of the Earth: New evidence, Earth Planet. Sci. Lett. 108, 1–9.

    Article  ADS  Google Scholar 

  • Sill, G. T., & Wilkening, L. 1978, Ice clathrate as a possible source of the atmospheres of the terrestrial planets, Icarus 33, 13–27.

    Article  ADS  Google Scholar 

  • Swindle, T. D. 1986, Xenon and other noble gases in shergottites, Geochim. Cosmochim. Acta 50, 1001–1015.

    Article  ADS  Google Scholar 

  • Swindle, T. D. 1995, How many Martian noble gas reservoirs have we sampled?, in AIP Conf. Proc. 341, Volatiles in the Earth and Solar System, ed. K. Farley (New York: AIP), pp. 175–185.

    Google Scholar 

  • Turekan, K. K., & Clark, S. P., Jr., 1975, The non-homogeneous accumulation model for terrestrial planet formation and the consequences for the atmosphere of Venus, J. Atmos. Sci. 32, 1257–1261.

    Article  ADS  Google Scholar 

  • van Dishoeck, E. F., Blake, G. A., Draine, B. T., & Lunine, J. I. 1993, The chemical evolution of protostellar and protoplanetary matter, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine (Tucson: Univ. Arizona Press), pp. 163–244.

    Google Scholar 

  • Wacker, J. F., & Anders, E. 1984, Trapping of xenon in ice and implications for the origin of the Earth ’s noble gases, Geochim. Cosmochim. Acta 48, 2372–2380.

    Article  ADS  Google Scholar 

  • Watson, L. L., Hutcheon, I. D., & Stopler, E. M. 1994, Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites, Science 265, 86–90.

    Article  ADS  Google Scholar 

  • Weissman, P. R. 1991, Dynamic History of the Oort Cloud, in Comets in the Post-Halley Era, ed. R. L. Newburn, Jr., M. Neugebauer, & J. Rahe (Dordrecht: Kluwer), pp. 463–486.

    Chapter  Google Scholar 

  • Yung, Y., & Dissly, R. W. 1992, Deuterium in the Solar System, in Amer. Chem. Soc. Symp. Ser. 502, Isotope Effects in Gas-Phase Chemistry, ed. J. A. Kaye (Washington, DC: American Chemical Society), pp. 369–389.

    Chapter  Google Scholar 

  • Zahnle, K., Kasting, J. E., & Pollack, J. B. 1991, Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape, Icarus 84, 502–527.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Owen, T.C., Bar-Nun, A. (2001). From the Interstellar Medium to Planetary Atmospheres via Comets. In: Marov, M.Y., Rickman, H. (eds) Collisional Processes in the Solar System. Astrophysics and Space Science Library, vol 261. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0712-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0712-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3832-4

  • Online ISBN: 978-94-010-0712-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics