Skip to main content

Remarks on the Characteristic Classes Associated with the Group of Fourier Integral Operators

  • Chapter
Noncommutative Differential Geometry and Its Applications to Physics

Part of the book series: Mathematical Physics Studies ((MPST,volume 23))

  • 423 Accesses

Abstract

We introduce secondary characteristic classes associated with symplectic diffeomorphism groups which recapture Maslov classes associated with the linear symplectic group. Analogously we also introduce secondary characteristic classes associated with Lie group FIO(N) of invertible Fourier integral operators on a manifold N ([2,3, 4] and [18,19]). As an application we find a nontrivial cycle in FIO(S n) as a lift of the geodesic flow of a sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnol’d, On a characteristic class entering in quantization conditions, Func.Anal.Appl. 1 (1967), 1–13.

    Article  Google Scholar 

  2. M. Adams, T. Ratiu and R. Schmid, The Lie group structure of diffeomorphism groups and invertible Fourier integral operators with applications, in Infinite dimensional Groups with applications, eds. V. Kac, Springer (1985), pp. 1–69.

    Google Scholar 

  3. M. Adams, T. Ratiu and R. Schmid, A Lie group structure for Pseudodifferential Operators, Math. Ann. 273 (1986), 529–551.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Adams, T. Ratiu and R. Schmid, A Lie group structure for Fourier integral Operators, Math. Ann. 276 (1986), 19–41.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization I, II, Ann.Phys. 111 (1978), 61–151.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V. Fedosov, A simple geometric construction of deformation quantization, J.Diff. Geom. 40-2 (1994), 213–248.

    MathSciNet  Google Scholar 

  7. L. Hörmander, Fourier integral operators I, Acta Math. 121 (1971), 79–183.

    Article  Google Scholar 

  8. M. Kontsevich, Deformation quantization of Poisson manifolds, I, q-alg/9709040

    Google Scholar 

  9. H. Kumanogo, Pseudo differential operators, MIT Press, 1982.

    Google Scholar 

  10. J. Leray, Lagrangian analysis and mechanics; a mathematical structure related to asymptotics expansion and Maslov index, MIT Press, Cambridge, 1981.

    Google Scholar 

  11. V. P. Maslov, Theory of Perturbations and Asymptotic Methods, izd. MGU, 1965.

    Google Scholar 

  12. N. Miyazaki, A remark on the Maslov form on the group generated by invertible Fourier integral operators, Lett. Math. Phys. 42 (1997), 35–42.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Miyazaki, Secondary characteristic classes and Feynman path integrals, submitted.

    Google Scholar 

  14. H. Omori, Theory of infinite dimensional Lie groups, Amer. Math. Soc. Trans. 158, 1996.

    Google Scholar 

  15. H. Omori, Y. Maeda, and A. Yoshioka, On regular Fréchet-Lie groups I, II, Tokyo J. of Math. 3 (1980), 353–390, 4 (1981), 231-253.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Omori, Y. Maeda, and A. Yoshioka, Weyl manifolds and deformation quantization, Adv. in Math. 85 (1991), 224–255.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Omori, Y Maeda, N. Miyazaki and A. Yoshioka, Poincaré-Cartan class and deformation quantization, Commun. Math. Phys. 194 (1998), 207–230.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. H. Omori, Y. Maeda, A. Yoshioka, and O. Kobayashi, On Regular Fréchet-Lie Groups III, IV, V, VI, VII, VIII, Tokyo J. of Math. 4 (1981), 255–277, 5 (1982), 365-398, 6 (1983), 39-64, 6 (1983), 217-246, 7 (1984), 315-336, 8 (1985), 1-47.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Omori, Y. Maeda, A. Yoshioka, and O. Kobayashi, The theory of infinite dimensional Lie groups and its applications, Acta Appl. Math.3 (1985), 71–105.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. D. Sogge, Fourier integrals in classical analysis, Cambridge University Press, 1993.

    Google Scholar 

  21. D. Sternheimer, Deformation Quantizatin Twenty Years After, q-alg/9809056

    Google Scholar 

  22. M. Takeuchi, Modern spherical functions, Translations of Mathematical Monographs, Vol.135, American Mathematical Society.

    Google Scholar 

  23. I. Vaismann, Symplectic geometry and secondary characteristic classes, Progress in Math. 72, (1987), Birkhäuser

    Google Scholar 

  24. A. Weinstein, Some questions about the index of quantized contact transformations, RIMS Kôkyûroku 1014 (1997), 1–14.

    MATH  Google Scholar 

  25. A. Yoshioka, Maslov Quantization Conditions for the Bounded States of the Hydrogen Atom, Tokyo Journal of Math. 9 (1986), 415–437.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Hideki Omori on his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miyazaki, N. (2001). Remarks on the Characteristic Classes Associated with the Group of Fourier Integral Operators. In: Maeda, Y., Moriyoshi, H., Omori, H., Sternheimer, D., Tate, T., Watamura, S. (eds) Noncommutative Differential Geometry and Its Applications to Physics. Mathematical Physics Studies, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0704-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0704-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3829-4

  • Online ISBN: 978-94-010-0704-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics