Skip to main content

Part of the book series: Mathematical Physics Studies ((MPST,volume 23))

  • 425 Accesses

Abstract

This article is a survey of recent work [15, 6, 7, 13] developing a new approach to quantization based on the equivariance with respect to some Lie group of symmetries. Examples are provided by conformai and projective differential geometry: given a smooth manifold M endowed with a flat conformal/projective structure, we establish a canonical isomorphism between the space of symmetric contravariant tensor fields on M and the space of differential operators on M. This leads to a notion of conformally/projectively invariant star product on T * M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S. Argaval, E. Wolf, Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics, I. Mapping theorems and ordering of functions on noncommuting operators, Phys. Rev. D, 2:10 (1970) 2161–2188.

    Article  MathSciNet  ADS  Google Scholar 

  2. F. Boniver and P. B. A. Lecomte, A remark about the Lie algebra of infinitesimal conformai transformations of the Euclidian space, to appear in J. of London Math. Soc.

    Google Scholar 

  3. P. Cohen, Yu. Manin and D. Zagier, Automorphic pseudodifferential operators, in Algebraic aspects of integrable systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997, pp. 17–47.

    Chapter  Google Scholar 

  4. C. Duval, J. Elhadad and G. M. Tuynman, The BRS Method and Geometric Quantization: Some Examples, Comm. Math, Phys., 126 (1990), 535–557.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. C. Duval and V. Ovsienko, Space of second order linear differential operators as a module over the Lie algebra of vector fields, Adv. in Math. 132: 2(1997), 316–333.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Duval and V. Ovsienko, Conformally equivariant quantization, Preprint CPT-98/P.3610, math.DG/9801122.

    Google Scholar 

  7. C. Duval, P. Lecomte and V. Ovsienko, Conformally equivariant quantization: existence and uniqueness, to appear in Ann. Inst. Fourier.

    Google Scholar 

  8. D. B. Fuchs, Cohomology of infinite-dimensional Lie algebras, Consultants Bureau, New York, 1987.

    Google Scholar 

  9. H. Gargoubi, Sur la géométrie des opérateurs différentiels linéaires sur R, Preprint CPT, 1997, P.3472.

    Google Scholar 

  10. H. Gargoubi and V. Ovsienko, Space of linear differential operators on the real line as a module over the Lie algebra of vector fields, Int. Res. Math. Notes, 1996, No. 5, 235–251.

    Google Scholar 

  11. R. L. Graham, D.E. Knuth and O. Patashnik, Concrete mathematics. A foundation for computer science, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1994.

    MATH  Google Scholar 

  12. A. A. Kirillov, Geometric Quantization, in Encyclopedia of Math. Sei., Vol. 4, Springer-Verlag, 1990.

    Google Scholar 

  13. P. B. A. Lecomte, On the cohomology of sl(m+1, ℝ) acting on differential operators and sl (m + 1,ℝ)-equivariant symbol, Preprint Université de Liège, 1998.

    Google Scholar 

  14. P. B. A. Lecomte, P. Mathonet and E. Tousset, Comparison of some modules of the Lie algebra of vector fields, Indag. Math., N.S., 7: 4 (1996), 461–471.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. B. A. Lecomte and V. Ovsienko, Projectively invariant symbol calculus, math.DG/9809061.

    Google Scholar 

  16. P. Mathonet, Intertwining operators between some spaces of differential operators on a manifold, Comm. in Algebra (1999), to appear.

    Google Scholar 

  17. W. P. Thurston, Three-Dimensional Geometry and Topology, Vol. 1, Princeton Univ. Press, 1997.

    Google Scholar 

  18. E. J. Wilczynski, Projective differential geometry of curves and ruled surfaces, Leipzig, Teubner, 1906.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Duval, C., Lecomte, P.B.A., Ovsienko, V. (2001). Methods of Equivariant Quantization. In: Maeda, Y., Moriyoshi, H., Omori, H., Sternheimer, D., Tate, T., Watamura, S. (eds) Noncommutative Differential Geometry and Its Applications to Physics. Mathematical Physics Studies, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0704-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0704-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3829-4

  • Online ISBN: 978-94-010-0704-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics