Skip to main content

Strong-Coupling Superconductivity with D-Wave Order Parameter and S-Wave Gap

Application to cuprates

  • Chapter
New Trends in Superconductivity

Part of the book series: NATO Science Series ((NAII,volume 67))

Abstract

Over the last decade a few competing models of high-temperature superconductivity were proposed, most of them with short-range interactions due to electron repulsive correlations. However, assessing the role of different interactions in novel superconductors one has to take into account that these materials are highly polarizable ionic lattices, where the Fröhlich electron-phonon interaction with optical phonons should be strong. Indeed, a parameter-free estimate[1] based on the measured dielectric constants shows that the polaron binding energy, Ep is about 0.5 eV or larger in oxides. Hence, the Fröhlich interaction should play an important role. Also, because of a poor screening, the direct unscreened Coulomb repulsion is important. There are extensive experimental [2, 3, 4, 5, 6, 7] and theoretical studies[8, 9, 10, 11], which prove that the electron-phonon (el-ph) interaction in high-Tc superconductors is exceptionally strong. Electron correlations are strong as well shaping the Mott-Hubbard insulating state of many parent (undoped) compounds [12]. Hence, the theory of high- Tc superconductors must treat both interactions on equal footing as was suggested some time ago [8]. Motivated by the fact that el-ph interaction is long-ranged in the cuprates because of poor screening, we have proposed a new approach to the high-Tc problem introducing a finite-range (Fröhlich) interaction [13, 14, 15]. The analytical [13] and Monte-Carlo [15] studies of a simple chain model with a long-range el-ph coupling revealed a several order lower effective mass of the small Fröhlich polaron compared with the small Holstein polaron. Later the single-polaron and bipolaron cases of the chain model were analyzed in more detail in Refs.[16] and [17], respectively. These

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. Lett. 84, 2043 (2000).

    Article  ADS  Google Scholar 

  2. G. Zhao, M. B. Hunt, H. Keller, and K. A. Müller, Nature 385, 236 (1997).

    Article  ADS  Google Scholar 

  3. A. Lanzara et al., Nature 412, 510 (2001).

    Article  ADS  Google Scholar 

  4. T. Timusket al in Anharmonic Properties of High-Tc Cuprates, eds. D. Mihailović et al (World Scientific, Singapore, 1995), p. 171.

    Google Scholar 

  5. T. Egami, J. Low Temp. Phys. 105, 791(1996).

    Article  Google Scholar 

  6. A. Lanzara, et al Journ. Phys.: Condens. Mat. 11, L541 (1999)

    Article  ADS  Google Scholar 

  7. D. R. Temprano et al, Phys. Rev. Lett. 84, 1982 (2000).

    Article  Google Scholar 

  8. A. S. Alexandrov and N. F. Mott, Rep. Prog. Phys. 57, 1197 (1994).

    Article  ADS  Google Scholar 

  9. J. T. Devreese, in Encyclopedia of Applied Physics vol. 14, p. 383 (VCH Publishers, 1996).

    Google Scholar 

  10. P. B. Allen, Nature 412, 494 (2001).

    Article  ADS  Google Scholar 

  11. L. P. Gor’kov, J. Supercond. 12, 9 (1999).

    Article  ADS  Google Scholar 

  12. P. W. Anderson, Physica C 341, 9 (2000).

    Article  Google Scholar 

  13. A. S. Alexandrov, Phys. Rev. B 53, 2863 (1996).

    Article  ADS  Google Scholar 

  14. A. S. Alexandrov, in ‘Models and Phenomenology for Conventional and High-temperature Superconductivity’ (Course CXXXVI of the Intenational School of Physics ‘Enrico Fermi’), eds. G. Iadonisi, J. R. Schrieffer and M. L. Chiofalo, (IOS Press, Amsterdam), p. 309 (1998).

    Google Scholar 

  15. A. S. Alexandrov and P. E. Kornilovitch, Phys. Rev. Lett. 82, 807 (1999); cond-mat/0111549.

    Article  ADS  Google Scholar 

  16. H. Fehske, J. Loos, and G. Wellein, Phys. Rev. B 61, 8016 (2000).

    Article  ADS  Google Scholar 

  17. J. Boncaj and S. A. Trugman, Phys. B 64, 4507 (2001).

    Google Scholar 

  18. A. S. Alexandrov, in ‘Lectures on the Physics of Highly Correlated Electron Systems V’, ed. F. Mancini (AIP, Melville, New York (2001)), p.1.

    Google Scholar 

  19. A. S. Alexandrov and P. P. Edwards, Physica C 331, 97 (2000).

    Article  ADS  Google Scholar 

  20. A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) (Sov. Phys. JETP 7, 996 (1958)).

    MathSciNet  Google Scholar 

  21. G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (I960); ibid 39, 1437 (1960) (Sov. Phys. JETP 11, 696 (1960; 12, 1000 (I960)).

    Google Scholar 

  22. A. S. Alexandrov, Zh. Fiz. Khim. 57, 273 (1983) (Russ.J.Phys.Chem.57, 167 (1983))

    Google Scholar 

  23. A. S. Alexandrov and E. A. Mazur, Zh. Eksp. Teor. Fiz. 96, 1773 (1989).

    Google Scholar 

  24. A. S. Alexandrov, Phys. Rev. B 46, 2838 (1992).

    Article  ADS  Google Scholar 

  25. L. D. Landau, J. Phys. (USSR) 3, 664 (1933).

    MATH  Google Scholar 

  26. T. Holstein, Ann.Phys. 8, 325; ibid 343 (1959).

    Article  ADS  MATH  Google Scholar 

  27. A. S. Alexandrov, Europhys. Lett. 56, 92 (2001).

    Article  ADS  Google Scholar 

  28. In the momentum representation the electron-phonon interaction with the electron and phonon operators, respectively, and z the lattice coordination number.

    Google Scholar 

  29. E. I. Rashba, Opt. Spectr. 2, 75 (1957), see also in Excitons eds. E. I. Rashba and D. M. Struge (Nauka, Moscow (1985)).

    Google Scholar 

  30. V. V. Kabanov and O. Yu. Mashtakov, Phys. Rev. B47, 6060 (1993).

    Article  ADS  Google Scholar 

  31. A. S. Alexandrov and J. Ranninger, Phys. Rev. B 23, 1796 (1981).

    Article  ADS  Google Scholar 

  32. J. Annett, N. Goldenfeld and A. J. Legget, in: D. M. Ginsberg (ed), Physical Properties of High Temperature Superconductors, vol. 5, World Scientific, Singapore, 375 (1996).

    Chapter  Google Scholar 

  33. D. A. Wollman et al, Phys. Rev. Lett. 71, 2134 (1993); C. C. Tsuei et al Phys. Rev. Lett. 73, 593 (1994); J. R. Kirtley et al Nature 373, 225 (1995); C. C. Tsuei et al Science 272, 329 (1996).

    Article  ADS  Google Scholar 

  34. H. Walter et al, Phys. Rev. Lett. 80, 3598 (1998).

    Article  ADS  Google Scholar 

  35. A. S. Alexandrov, Physica C (Amsterdam) 305, 46 (1998).

    Article  ADS  Google Scholar 

  36. A. S. Alexandrov, V. V. Kabanov and N. F. Mott, Phys. Rev. Lett. 77, 4796 (1996).

    Article  ADS  Google Scholar 

  37. K. A. Müller et al J.Phys.: Condens. Matter 10, L291 (1998).

    Article  Google Scholar 

  38. H. Hancotte et al Phys. Rev. B55, R3410 (1997).

    Article  ADS  Google Scholar 

  39. Ch. Renner et al, Phys. Rev. Lett. 80, 149 (1998).

    Article  ADS  Google Scholar 

  40. B. Batlogg et al Physica C (Amsterdam) 135-140, 130 (1994)

    Article  ADS  Google Scholar 

  41. J. W. Loram et al Physica C (Amsterdam), 235, 134 (1994).

    Article  ADS  Google Scholar 

  42. A. S. Alexandrov, Physica C 182, 327 (1991).

    Article  ADS  Google Scholar 

  43. A. S. Alexandrov and A. F. Andreev, Eurolett. 54, 373 (2001).

    ADS  Google Scholar 

  44. A. S. Alexandrov and C. J. Dent, Phys. Rev. B 60, 15414 (1999).

    Article  ADS  Google Scholar 

  45. A. S. Alexandrov and C. Sricheewin, Europhys. Lett., 51, 188 (2000); cond-mat/0102284.

    Article  ADS  Google Scholar 

  46. A. S. Alexandrov and C. J. Dent, J. Phys.: Condens. Matter 13, L417 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alexandrov, A.S. (2002). Strong-Coupling Superconductivity with D-Wave Order Parameter and S-Wave Gap. In: Annett, J.F., Kruchinin, S. (eds) New Trends in Superconductivity. NATO Science Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0544-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0544-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0705-7

  • Online ISBN: 978-94-010-0544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics