Skip to main content

Stripe-Like Inhomogeneities, Carriers, and BCS-BEC Crossover in the High-T C Cuprates

  • Chapter
New Trends in Superconductivity

Part of the book series: NATO Science Series ((NAII,volume 67))

  • 302 Accesses

Abstract

Theoretical calculations [1, 2], and a variety of experimental data [3] support the assumption that the high-Tc cuprates are characterized by dynamical stripe-like inhomogeneities, where narrow charged stripes form antiphase domain walls separating wider antiferromagnetic (AF) stripes. Experimental observations have been pointing to the presence of both itinerant and almost localized (or polaron-like) carriers in the cuprates. First-principles calculations [4] support an approach based on the existence of both large-U and small-U orbitals in the vicinity of the Fermi level (EF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Zaanen, and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989).

    Article  ADS  Google Scholar 

  2. V. J. Emery, and S. A. Kivelson, Physica C 209, 597 (1993).

    Article  ADS  Google Scholar 

  3. Papers in Int. J. Mod. Phys. 14, 3289–3790 (2000).

    Google Scholar 

  4. O. K. Andersen et al, J. Phys. Chem. Solids 56, 1573 (1995).

    Article  ADS  Google Scholar 

  5. S. E. Barnes, Adv. Phys. 30, 801 (1980).

    Article  ADS  Google Scholar 

  6. J. Ashkenazi, J. Phys. Chem. Solids (2002); cond-mat/0108383.

    Google Scholar 

  7. J. Ashkenazi, J. Supercond. 7, 719 (1994).

    Article  ADS  Google Scholar 

  8. J. Ashkenazi, High-Temperature Superconductivity edited by S. E. Barnes, J. Ashkenazi, J. L. Cohn, and F. Zuo (AIP Conference Proceedings 483, 1999), p. 12; cond-mat/9905172.

    Google Scholar 

  9. A. Bianconi, et al, Phys. Rev. B 54, 12018 (1996).

    Article  ADS  Google Scholar 

  10. H. Eskes, et al, Phys. Rev. Lett. 67, 1035 (1991).

    Article  ADS  Google Scholar 

  11. Z. X. Shen, et al cond-mat/0108381.

    Google Scholar 

  12. P. D. Johnson, et al., Phys. Rev. Lett. 87, 177007 (2001

    Article  ADS  Google Scholar 

  13. H. F. Fong, et al., Phys. Rev. B 61, 14773 (2000).

    Article  ADS  Google Scholar 

  14. D. B. Tanner, and T. Timusk, Physical Properties of High Temperature Superconductors III edited by D. M. Ginsberg (World Scientific, 1992), p. 363.

    Google Scholar 

  15. B. Fisher, et al, J. Supercond. 1, 53 (1988); J. Genossar, et al., Physica C 157, 320 (1989).

    Article  ADS  Google Scholar 

  16. S. Tanaka, et al., J. Phys. Soc. Japan 61, 1271 (1992).

    Article  ADS  Google Scholar 

  17. Y. Kubo and T. Manako, Physica C 197, 378 (1992).

    Google Scholar 

  18. Y. Kubo and T. Manako, Physica C 197, 378 (1992).

    Article  ADS  Google Scholar 

  19. H. Takagi, et al., Phys. Rev. Lett. 69, 2975 (1992); H. Y. Hwang, et al., ibid. 72, 2636 (1994).

    Article  ADS  Google Scholar 

  20. J. Takeda, et al., Physica C 231, 293 (1994); X.-Q. Xu, et al., Phys. Rev. B 45, 7356 (1992); Wu Jiang, et al., Phys. Rev. Lett. 73, 1291 (1994).

    Article  ADS  Google Scholar 

  21. M. R. Norman, and H. Ding, Phys. Rev. B 57, R11089 (1998).

    Article  ADS  Google Scholar 

  22. M. Randeria, cond-mat/9710223, Varenna Lectures (1997); J. R. Engelbrecht, et al., Phys. Rev. B 55, 15153 (1997); R. D. Duncan, and C. A. R. Sá de Melo, ibid 62, 9675 (2000); Q. Chen, et al., ibid 63, 184159 (2001).

    Article  ADS  Google Scholar 

  23. C. P. Moca, and B. Jankó, Phys. Rev. B 65, 052503 (2002).

    Article  ADS  Google Scholar 

  24. V. J. Emery, and S. A. Kivelson, Nature 374, 4347 (1995).

    Article  Google Scholar 

  25. Ch. Niedermayer, et al., Phys. Rev. Lett. 71, 1764 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ashkenazi, J. (2002). Stripe-Like Inhomogeneities, Carriers, and BCS-BEC Crossover in the High-T C Cuprates. In: Annett, J.F., Kruchinin, S. (eds) New Trends in Superconductivity. NATO Science Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0544-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0544-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0705-7

  • Online ISBN: 978-94-010-0544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics