Skip to main content

Exchange and Spin-Fluctuation Pairing in the Two-Band Hubbard Model

Application to cuprates

  • Chapter
New Trends in Superconductivity

Part of the book series: NATO Science Series ((NAII,volume 67))

  • 312 Accesses

Abstract

Since the discovery of the high temperature superconductivity in cuprates, it has been believed by many researchers that an electronic mechanism could be responsible for the high values of Tc [1], A distinctive feature of high-Tc copper oxide superconductors is strong antiferromagnetic (AFM) exchange interaction (see, for example, [2]). The exchange binding energy of two holes with spin 1/2 in copper Cu(3d9) and oxygen O(2p6)ions comprises a value of order 1 eV, and the indirect (through oxygen ions) AFM exchange energy of holes in copper ions is of order 0.13 eV. If cuprates had a three- dimensional network of bonds for copper spins, the AFM Néel temperature in these materials could reach a record value 1500 K. However, because of the layered structure of cuprates the Néel temperature turns out to be much lower, TN ≃ 300 – 500 K, though still very high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. For a review see Scalapino, D.J. (1995) The case for dx2_y2 pairing in the cuprate superconductors, Phys. Reports 250, 329–365.

    Article  Google Scholar 

  2. Plakida, N.M. (1995) High-Temperature Superconductivity Springer, Heidelberg.

    Book  Google Scholar 

  3. Anderson, P.W. (1987) The resonating valence bond state in La2CuO4 and superconductivity, Science 235, 1196; Anderson, P.W. (1997) The theory of superconductivity in the high-Tc cuprates Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  4. Izyumov, Yu. A.(1999) Spin-fluctuation high-Tc superconductivity and the order parameter symmetry, Usp. Fiz. Nauk 169, 225–254.

    Article  Google Scholar 

  5. Plakida, N.M., Yushankhai, V.Yu., and Stasyuk, I.V. (1989) On the role of kinematical and exchange interactions in superconducting pairing of electrons in the Hubbard model, Physica C 160, 80–88; Yushankhai, V.Yu., Plakida, N.M., and Kalinay, P. (1991) Superconducting pairing in the mean-field approximation for the t — J model: Numerical analysis. Physica G, 174, 401-409.

    Article  ADS  Google Scholar 

  6. Izyumov, Yu.A. and Letfulov, B.M. (1992) Superconductivity in the Hubbard model with strong Coulomb repulsion, Intern. J. Modern Phys. B 6, 321–357.

    Article  ADS  Google Scholar 

  7. Plakida, N.M. and Oudovenko, V.S. (1999) Electron spectrum and superconductivity in the t-J model at moderate doping, Phys. Rev. B 59, 11949–11961.

    Article  ADS  Google Scholar 

  8. Plakida, N.M., Hayn, R., and Richard, J.-L. (1995) Two-band singlet-hole model for the copper-oxide plane, Phys. Rev. B 51, 16599–16607.

    Article  ADS  Google Scholar 

  9. Feiner, L.F., Jefferson, J.H., and Raimondi, R. (1996) Effective single-band models for high-Tc cuprates. I. Coulomb interactions, Phys. Rev. B 53, 8751–8773.

    Article  ADS  Google Scholar 

  10. Emery, V.J. (1987) Theory of high-Tc in oxides, Phys. Rev. Lett. 58, 2794–2797; Varma, CM., Schmitt-Rink, S., and Abrahams, E.,(1987) Charge transfer excitations and superconductivity in ionic metals, Solid State Commun. 62, 681-685.

    Article  ADS  Google Scholar 

  11. Plakida, N.M., Anton, L., Adam, S., Adam, Gh., (2000) Exchange and spin-fluctuation superconducting pairing in the Hubbard model in the strong correlation limit, Preprint JINR, E-17-2001-59, Dubna; cond-mat/0104234.

    Google Scholar 

  12. Plakida, N.M. (2001) Antiferromagnetic exchange mechanism of superconductivity in cuprates, JETP Letters 74, 36–40.

    Article  ADS  Google Scholar 

  13. Zubarev, D.N. (1960)Double-time Green’s functions in statistical physics, Sov. Phys. Usp. 3, 320–365.

    Article  MathSciNet  ADS  Google Scholar 

  14. Beenen, J. and Edwards, D.M. (1995) Superconductivity in the two-dimensional Hubbard model, Phys. Rev. B 52, 13636–13651.

    Article  ADS  Google Scholar 

  15. Avella, A., Mancini, F., Villani, D., and Matsumoto H. (1997) The superconducting gap in the two-dimensional Hubbard model, Physica C 282-287, 1757–1758; Di Matteo, T., Mancini, F., Matsumoto, H., and Oudovenko, V.S. (1997) Singlet pairing in the 2D Hubbard model, Physica B 230-232, 915-917.

    Google Scholar 

  16. Stanescu, T.D., Martin, I., and Phillips, Ph. (2000) dx2 y2 pairing of composite excitations in the two-dimensional Hubbard model, Phys. Rev. B 62, 4300–4308

    Article  ADS  Google Scholar 

  17. Lokshin, K.A., Pavlov, D.A., Putilin, S.N., et al (2001) Enhancement of Tc in HgBa2Ca2Cu3O8+ð Phys. Rev. B 63, 064511.

    Article  ADS  Google Scholar 

  18. Zhao, G.-M., Singh, K.K., and Morris, D.E.(1994) Oxygen isotope effects on Néel temperature in various antiferromagnetic cuprates, Phys. Rev. B 50, 4112–4117.

    Article  ADS  Google Scholar 

  19. Anderson, P.W. (1997) A re-examination of concepts in magnetic metals: the ‘nearly antiferromagnetic Fermi liquid’, Adv. in Physics 46, 3–11.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Plakida, N.M., Anton, L., Adam, S., Adam, G. (2002). Exchange and Spin-Fluctuation Pairing in the Two-Band Hubbard Model. In: Annett, J.F., Kruchinin, S. (eds) New Trends in Superconductivity. NATO Science Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0544-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0544-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0705-7

  • Online ISBN: 978-94-010-0544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics