Skip to main content

Study on Electronic Specific Heat of LA2-xSRxCUO4; Pseudogap and Superconductivity

  • Chapter
New Trends in Superconductivity

Part of the book series: NATO Science Series ((NAII,volume 67))

Abstract

In high-Tc cuprates it is strongly suggested that the phase diagram is characterized by two kinds of crossover temperatures Tmax(T0) and T*(Tc < T* < Tmax [1,2]. Intensive studies on the crossover phenomena around Tmax and T* have been performed to understand the anomalous normal state and clarify the mechanism of the superconductivity. The magnetic susceptibility x in Bi2Sr2CaCu2O8 (Bi2212) and La2-xSrxCuO4 (La214), following the Curie-Weiss law at TT max , gradually decreases at T < T max [3-5]. Detailed analyses on the x-T curves have revealed that the energy scale k B T max gives the effective antiferromagnetic (AF) exchange energy J eff between Cu 3d-spins and the gradual decrease of x at T < T max is due to the development of a (short range) AF correlation [3-5]. Recently angle-integrated photoemission spectroscopy (AIPES) has revealed that a gap-like structure, namely a pseudogap (PG), progressively develops over a wide T-range below T max [2]. The PG has the energy scale characterized by J eff ; that is, the spectral weight is depressed over the energy region of J eff around E f [6]. These facts indicate that the PG evolution will be closely related to the development of the AF correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Oda et al., Supercond. Sei. Technol. 13 (2000) R139.

    Article  ADS  Google Scholar 

  2. T. Sato et al., Physica C 341-348 (2000) 815.

    Article  Google Scholar 

  3. D. C. Johnston, Phys. Rev. Lett. 62 (1989), 957.

    Article  ADS  Google Scholar 

  4. M. Oda et al., J. Phys. Soc. Jpn. 58 (1989)1137.

    Article  ADS  Google Scholar 

  5. T. Nakano et al., Phys. Rev. B 49 (1994) 16000.

    Article  ADS  Google Scholar 

  6. A. Ino et al., Phys. Rev. Lett. 81 (1998), 2124.

    Article  ADS  Google Scholar 

  7. H. Yasuoka et al., Springer Series in Solid State Science 89, Springer-Verlag, 1989, p254.

    Article  Google Scholar 

  8. R. E. Walstedt et al., Phys. Rev. B 44 (1991), 7760.

    Article  ADS  Google Scholar 

  9. K. Ishida et al., Phys. Rev. B 58 (1998) 5960.

    Article  ADS  Google Scholar 

  10. A. G. Loeser et al., Science 273 (1996), 325.

    Article  ADS  Google Scholar 

  11. H. Ding et al., Nature 382 (1996), 51.

    Article  ADS  Google Scholar 

  12. M. Oda et al., Physica C 281 (1997), 135.

    Article  ADS  Google Scholar 

  13. F. J. Ohkawa, J. Phys. Soc. Jpn. 56 (1987) 2267.

    Article  ADS  Google Scholar 

  14. T. Tanamoto et al., J. Phys. Soc. Jpn. 61 (1992), 1886.

    Article  ADS  Google Scholar 

  15. H. Won and K. Maki, Phys. Rev. B 49 (1994), 1397.

    Article  ADS  Google Scholar 

  16. T. Nakano et al., J. Phys. Soc. Jpn. 67 (1998), 2622.

    Article  ADS  Google Scholar 

  17. N. Momono et al., J. Low Temp. Phys., 117 (1999), 353.

    Article  ADS  Google Scholar 

  18. N. Momono and M. Ido, Physica C 264 (1996) 311.

    Article  ADS  Google Scholar 

  19. K. Ishida et al., J. Phys. Soc. Jpn. 62 (1993) 2803.

    Article  ADS  Google Scholar 

  20. T. Nakano et al., Phys. Rev. B 58 (1998) 5831.

    Article  ADS  Google Scholar 

  21. M.-H. Julien et al., Phys. Rev. Lett. 84 (2000) 3422.

    Article  ADS  Google Scholar 

  22. Y. Itoh et al., J. Phys. Soc. Jpn. 70 (2001) 644.

    Article  ADS  Google Scholar 

  23. M. Kall et al., Physica C 225 (1994) 317.

    Article  ADS  Google Scholar 

  24. H. Harashina et al., Physica C 263 (1996) 257.

    Google Scholar 

  25. C. Kendoziora et al., Phys. Rev. Lett. 77 (1996) 727.

    Article  ADS  Google Scholar 

  26. J. W. Loram et al., Proc. of 10th Anniversary HTS Workshop, Houston, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Momono, N., Nagata, T., Matsuzaki, T., Oda, M., Ido, M. (2002). Study on Electronic Specific Heat of LA2-xSRxCUO4; Pseudogap and Superconductivity. In: Annett, J.F., Kruchinin, S. (eds) New Trends in Superconductivity. NATO Science Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0544-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0544-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0705-7

  • Online ISBN: 978-94-010-0544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics