Skip to main content

An Interpretation Of The Retention Of Low Energy Deuterium Ions In Tungsten

  • Chapter
Hydrogen and Helium Recycling at Plasma Facing Materials

Part of the book series: NATO Science Series ((NAII,volume 54))

Abstract

This report is a summary of our investigations of D retention in various forms of tungsten: high purity polycrystalline W (PCW), polycrystalline W containing 1% La2O3, and two grades of single crystal W (SCW). The experiments have been primarily implantations followed by thermal desorption measurements. Nuclear reaction analysis and SIMS were used to measure the depth distributions near the surface. By using low energy ions (500 eV/D+), it has been possible to eliminate most if not all elastic collision defect creation, yet this has not reduced the trapping significantly. Comparing the results for the various forms of W has enabled us to assess the effects of grain boundaries, dislocations and impurities. Recent work has included a study of the effects of ion flux on deuterium retention in SCW. The conclusion drawn is that D is trapped in clusters or nano-bubbles, and that these traps grow with increasing fluence, particularly at higher temperatures. The large variations in the retention of D in W show that the processes controlling D trapping are many and complex. In order to form a more comprehensive picture, and eventually attempt to predict retention under fusion relevant conditions, modeling has been performed using TMAP4[1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G.R. Longhurst, D.F. Holland, J.L Jones and B.J. Merrill (1992), Tritium Migration and Analysis Program, Version 4, EGG-FSP-10315.

    Google Scholar 

  2. R. Frauenfelder (1968), Solution and diffusion of hydrogen in tungsten, J. Vac. Sci and Technol. 6, 388–397.

    Google Scholar 

  3. A.A. Haasz, M. Poon, R.G. Macaulay-Newcombe and J.W. Davis (2001), Deuterium retention in single crystal tungsten, J. Nucl. Mater. 290-293, 85–88.

    CAS  Google Scholar 

  4. P. Franzen, C. Garcia-Rosales, H. Plank and V.Kh. Alimov (1997), Hydrogen trapping in and release from tungsten: Modeling and comparison with graphite with regard to its use as fusion reactor material, J. Nucl Mater. 241-243, 1082–1086.

    CAS  Google Scholar 

  5. R. Sakamoto, T. Muroga and N. Yoshida (1996), Retention and desorption of implanted deuterium of high-Z plasma facing materials, J. Nucl. Mater. 233-237, 776–780.

    Google Scholar 

  6. A.A. Pisarev, S.K. Zhdanov and O.V. Ogorodnikova (1994), A model for trapping and re-emission at hydrogen ion implantation, J. Nucl. Mater. 211, 127–134.

    Google Scholar 

  7. R.A. Anderl, D.F. Holland, G.R. Longhurst, R.J. Pawelko, C.L. Trybus and C.H. Sellers (1992), Deuterium transport and trapping in polycrystalline tungsten, Fus. Technol. 21, 745–752.

    CAS  Google Scholar 

  8. V.Kh. Alimov and B.M.U. Scherzer (1996), Deuterium retention and re-emission from tungsten materials, J. Nucl. Mater. 240, 75–80.

    CAS  Google Scholar 

  9. J.W. Davis and A.A. Haasz (1995), Reemission of deuterium atoms from Mo, Ta and W during D+-irradiation, J. Nucl. Mater. 223, 312–315.

    CAS  Google Scholar 

  10. A. A. Haasz and J.W. Davis (1997), Deuterium retention in beryllium, molybdenum and tungsten at high fluences, J. Nucl. Mater. 241-243, 1076–1081.

    CAS  Google Scholar 

  11. A.A. Haasz, J.W. Davis, M. Poon and R.G. Macaulay-Newcombe (1998), Deuterium retention in tungsten for fusion use, J. Nucl, Mater. 258-263, 889–895.

    CAS  Google Scholar 

  12. A.A. Haasz, M. Poon and J.W. Davis (1999), The effect of ion damage on deuterium trapping in tungsten, J. Nucl. Mater. 266-269, 520–525.

    CAS  Google Scholar 

  13. A. van Veen, H.A. Filius, J. DeVries, K.R. Bijkerk, G.J. Rozing and D. Segers (1988) J. Nucl. Mater, 155-157, 1113–1117.

    Google Scholar 

  14. H. Eleveld and A. van Veen (1994), Void growth and thermal desorption of deuterium from voids in tungsten, J. Nucl. Mater. 212-215, 1421–1425.

    CAS  Google Scholar 

  15. N. Yoshida (2001), Effects of helium bombardment on hydrogen trapping in W, IAEA Advisory group meeting on the “Assessment of New Data for Tritium Retention in Fusion Reactor Materials”, July, 2001, Vienna.

    Google Scholar 

  16. R. Sakamoto, T. Muroga and N. Yoshida (1995), Microstructural evolution induced by low energy hydrogen ion irradiation in tungsten, J. Nucl. Mater. 220-222, 819–822.

    CAS  Google Scholar 

  17. R. Causey, K. Wilson, T. Venhaus and W.R. Wampler (1999), Tritium retention in W exposed to intense fluxes of 100 eV tritons, J. Nucl. Mater. 266-269, 467–471.

    CAS  Google Scholar 

  18. R.S. Barnes and D.J. Mazey (1963), The migration and coalescence of inert gas bubbles in metals, Proc. oyal Soc. London A275, 47–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Macaulay-Newcombe, R.G., Haasz, A.A., Poon, M., Davis, J.W. (2002). An Interpretation Of The Retention Of Low Energy Deuterium Ions In Tungsten. In: Hassanein, A. (eds) Hydrogen and Helium Recycling at Plasma Facing Materials. NATO Science Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0444-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0444-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0512-1

  • Online ISBN: 978-94-010-0444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics