Skip to main content

Deuterium Retention In Tungsten And Tungsten Carbides Irradiated With D Ions

  • Chapter
Hydrogen and Helium Recycling at Plasma Facing Materials

Part of the book series: NATO Science Series ((NAII,volume 54))

Abstract

Depth profiles of D atoms and D2 molecules in tungsten and chemical vapor deposited (CVD) tungsten carbides W2C and WC exposed to D plasma at temperatures in the range 340 to 670 K or implanted with 6–10 keV D ions at 300 and 650 K have been determined using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA) measurements in the course of surface sputtering. The deuterium inventory has depended strongly on the structure of the materials investigated. In polycrystalline hotrolled W exposed to D plasma the deuterium has been retained in the bulk of the material as D atoms at intrinsic defects (grain and block boundaries, dislocations, etc.), whereas in the bulk of W single crystals also exposed to the D plasma the deuterium has not been found. In W single crystals and hot-rolled W samples implanted with 6 keV D ions at 300 K the deuterium is retained as D atoms both in the ion stopping zone and at depths up to several urn. Besides, in the stopping zone the deuterium has been additionally accumulated in the form of D2 molecules. After D ion implantation at 650 K the D2 molecules have not been observed in the W samples and deuterium is trapped solely in the form of D atoms in the implantation zone. There are at least two types of ion-induced defects which are responsible for trapping of D in the W samples: (i) D2 filled microvoids localized in the implantation zone and (ii) dislocations which are distributed from the surface to depths far beyond 1 urn and capture deuterium in the form of D atoms. Additionally, D atoms can be trapped by vacancies and adsorbed on bubble walls. In fine-grain CVD tungsten carbides irradiated with 10 keV D ions at 300 K the deuterium has been accumulated in the form of only D atoms far beyond the implantation zone. At 650 K the D atoms have been captured within the implantation zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanabe, T., Ohgo, T., Wada, M., Rubel, M., Philipps, V., von Seggern, J., Ohya, K., Huber, A., Pospieszczyk, A., Schweer, B. and TEXTOR team (2000) Material mixing on W/C twin limiter in TEXTOR-94, Fusion Eng. Des. 49-50, 355–362.

    Article  CAS  Google Scholar 

  2. Linsmeier, Ch., Luthin, J., and Goldstraß, P. (2001) Mixed material formation and erosion, J. Nucl. Mater. 290-293, 25–32.

    Article  CAS  Google Scholar 

  3. Pisarev, A.A., Varava, A.V., and Zhdanov, S.K. (1995) Ion implantation of deuterium in tungsten, J. Nucl. Mater. 220-222, 6.

    Google Scholar 

  4. Garcia-Rosales, C, Franzen, P., Plank, H., Roth, J., and Gauthier, E. (1996) Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade, J. Nucl. Mater. 233-237, 803–808.

    Article  CAS  Google Scholar 

  5. Sakamoto, R., Mugora, T., and Yoshida, N. (1996) Retention and desorption of implanted deuterium of high-Z plasma facing materials, J. Nucl. Mater. 233-237, 776–780.

    Article  CAS  Google Scholar 

  6. Alimov, V.Kh. and Scherzer, B.M.U. (1996) Deuterium retention and re-emission from tungsten materials, J. Nucl. Mater. 240, 75–80.

    Article  CAS  Google Scholar 

  7. O’hira, S., Steinér, A., Nahamura, H., Causey, R., Nishi, M., and Willms, S. (1998) Tritium retention study of tungsten using various hydrogen irradiation sources, J. Nucl. Mater. 258-263, 990–997.

    Article  CAS  Google Scholar 

  8. Haasz, A.A. and Davis, J.W. (1997) Deuterium retention in beryllium, molybdenum and tungsten at high fluences, J. Nucl Mater. 241-243, 1076–1081.

    CAS  Google Scholar 

  9. Haasz, A.A., Davis, J.W., Poon, M., and Macaulay-Newcombe, R.G. (1998) Deuterium retention in tungsten for fusion use, J. Nucl. Mater. 258-263, 889–895.

    Article  CAS  Google Scholar 

  10. Haasz, A.A., Poon, M., and Davis, J.W. (1999) The effect of ion damage on deuterium trapping in tungsten, J. Nucl. Mater. 266-269, 520–525.

    Article  CAS  Google Scholar 

  11. Causey, R., Wilson, K., Venhaus, T., and Wampler, W.R. (1999) Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons, J. Nucl. Mater. 266-269, 467–471.

    Article  CAS  Google Scholar 

  12. Nagata, S., Takahiro, K., Horiike, S., and Yamaguchi, S. (1999) Retention and release of deuterium implanted in W and Mo, J. Nucl. Mater. 266-269, 1151–1156.

    Article  CAS  Google Scholar 

  13. Haasz, A.A., Poon, M., Macaulay-Newcombe, R.G., and Davis, J.W.(2001) Deuterium retention in single crystal tungsten, J. Nucl. Mater. 290-293, 85–88.

    Article  CAS  Google Scholar 

  14. Venhaus, T., Causey, R., Doerner, R., and Abeln, T. (2001) Behavior of tungsten exposed to high fluences of low energy hydrogen isotopes, J. Nucl. Mater. 290-293, 505–508.

    Article  CAS  Google Scholar 

  15. Alimov, V.Kh., Ertl, K., and Roth, J. (2001) Deuterium retention and lattice damage in tungsten irradiated with D ions, J. Nucl. Mater. 290-293, 389–393.

    Article  CAS  Google Scholar 

  16. Anderl, R.A., Rawelko, R.J., and Schuetz, S.T. (2001) Deuterium retention in W, W1%La, C-coated W and W2C, J. Nucl. Mater. 290-293, 38–41.

    Article  CAS  Google Scholar 

  17. Guseva, M.I., Vasiliev, V.I., Gureev, V.M., Danelyan, L.S., Khripunov, B.I., Korshunov, S.N., Kulikauskas, V.S., Martynenko, Yu.V., Petrov, V.B., Strunnikov, V.N., Stolyarova, V.G., Zatekin, V.V., and Litnovsky, A.M. (2001) Peculiarity of deuterium ion interaction with tungsten surface in the condition imitating combination of normal operation with plasma disruption in ITER, J. Nucl. Mater. 290-293, 1069–1073.

    Article  CAS  Google Scholar 

  18. Anderl, R.A., Holland, D.F., Longhurst, G.R., Pawelko, R.J., Trybus, C.L., and Sellers, C.H. (1992) Deuterium transport and trapping in polycrystalline tungsten, Fusion Technol. 21, 745–752.

    CAS  Google Scholar 

  19. Franzen, P., Garcia-Rosales, C, Plank, H., and Alimov V.Kh. (1997) Hydrogen trapping in and release from tungsten: Modeling and comparison with graphite with regard to its use as fusion reactor material, J. Nucl. Mater. 241-243, 1082–1086.

    CAS  Google Scholar 

  20. Thompson, D.A. and Macaulay-Newcombe, R.G. (1997) Solubility, Diffusion and Desorption of Hydrogen Isotopes in Beryllium and Tungsten, McMaster University/CFFTR Annual Report for ITER Task T227.

    Google Scholar 

  21. Sakamoto, R., Muroga, T., and Yoshida, N.(1995) Microstructural evolution induced by low energy hydrogen ion irradiation in tungsten, J. Nucl. Mater. 220-222, 819–822.

    Article  CAS  Google Scholar 

  22. Wang, W., Alimov, V.Kh., Scherzer, B.M.U., and Roth, J. (1997) Deuterium trapping in and release from tungsten carbide, J. Nucl. Mater. 241-243, 1087–1092.

    Article  CAS  Google Scholar 

  23. Horikawa, T., Tsuchiya, B., and Morita, K. (1998) Retention and re-emission of deuterium implanted into tungsten monocarbide, J. Nucl. Mater. 258-263, 1087–1091.

    Article  CAS  Google Scholar 

  24. Alimov, V.Kh., Ertl, K., Roth, J., and Schmid, K. (2000) Retention of ion-implanted deuterium in tungsten pre-irradiated with carbon ions, J. Nucl. Mater. 282, 125–130.

    Article  CAS  Google Scholar 

  25. Haasz, A.A., Davis, J.W., Hamilton, C.G., Macaulay-Newcombe, R.G., Poon, M., and Wright, P.B. (2000) Studies of mixed materials at UTIAS, Proc. 2nd IAEA RCM on “Plasma-Material Interaction Data for Mixed Plasma-Facing Materials in Fusion Reactors”, Vienna, Austria, October 16–17, 2000.

    Google Scholar 

  26. Alimov, V.Kh., Chernikov, V.N., and Zakharov, A.P. (1997) Depth distribution of deuterium atoms and molecules in beryllium implanted with D ions, J. Nucl. Mater. 241-243, 1047–1051.

    CAS  Google Scholar 

  27. Eckstein, W. (1991) Computer Simulation of Ion-Solid Interaction, Springer Series in Materials Science, Vol. 10, Springer, Berlin.

    Google Scholar 

  28. Fransens, J.R., Abd El Keriem, M.S., and Pleiter, F. (1991) Hydrogen-vacancy interaction in tungsten, J. Phys. Cond. Matter, 3, 9871–9886.

    Article  CAS  Google Scholar 

  29. Eleveld, H. (1996) Hydrogen and Helium in Selected Fusion Reactor Materials, PhD. Thesis, Technische Universiteit Delft, The Netherlands.

    Google Scholar 

  30. Van Veen, A., De Vries, J., Segers, D., and Rozing, G.J. (1985) Hydrogen defect interaction in tungsten observed with PA, in P.C. Jain, R.M. Singru and K.P. Gopinathan (eds), Positron Annihilation, World Scientific Publ. Co., Singapore, pp. 543–545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alimov, V.K., Zakharov, A.P., Zalavutdinov, R.K. (2002). Deuterium Retention In Tungsten And Tungsten Carbides Irradiated With D Ions. In: Hassanein, A. (eds) Hydrogen and Helium Recycling at Plasma Facing Materials. NATO Science Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0444-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0444-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0512-1

  • Online ISBN: 978-94-010-0444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics