Skip to main content

Hydrogen Isotopes Retention In Fusion Reactor Plasmafacing Materials: An Abbreviated Review

  • Chapter
Hydrogen and Helium Recycling at Plasma Facing Materials

Part of the book series: NATO Science Series ((NAII,volume 54))

  • 292 Accesses

Abstract

Fusion reactor design requires an understanding of the tritium retention and recycling properties of the plasma-facing materials. After many years of research, a basic understanding of these properties for materials such as beryllium, carbon, and tungsten has been achieved. This report is an abbreviated review of these properties. The most widely accepted values (in the opinion of the authors) for diffusivity, solubility, recombination rate coefficient, and trapping parameters for each of the above materials is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, P.M.S and Gibson, R. (1967) Hydrogen in beryllium, J. Nucl. Mater. 21, 353.

    Article  CAS  Google Scholar 

  2. Swansiger, W.A. (1986) Summary Abstract: Tritium solubility in high purity beryllium, J. Vac. Sci. Technol. A4(3), 1216.

    Google Scholar 

  3. Shapovalov, V.l. and Dukel’skii, Y.M. (1981) The beryllium-hydrogen phase diagram, Izvestiya Adademii Nauk SSSR. Metally, 5, 201.

    Google Scholar 

  4. Wampler, W.R. (1984) Retention and thermal release of deuterium implanted in beryllium, J. Nucl. Mater. 122-123, 1598.

    Article  Google Scholar 

  5. Moller, W, Scherzer, B.M.U., and Bohdansky, J. (1985) Retention and release of deuterium implanted into beryllium, IPP-JET Report No. 26.

    Google Scholar 

  6. Yoshida, N., Mizusawa, S., Sakamoto, R., and Muroga, T. (1996) Radiation damage and deuterium trapping in deuterium ion injected beryllium, J. Nucl. Mater. 233-237, 874.

    Article  CAS  Google Scholar 

  7. Chernikov, V.N., Alimov, V.Kh., and Markin, A.V. (1996) Gas-induced swelling of beryllium implanted with deuterium ions, J. Nucl. Mater. 233-237, 860.

    Article  CAS  Google Scholar 

  8. Markin, A.V., Chernikov, V.N., Sybakov, S.Y., and Zakharov, A.P. (1996) J. Nucl Mater. 233-237, 865.

    Article  CAS  Google Scholar 

  9. Alimov, V.Kh., Chernikov, V.N., and Zakharov, A.P. (1997) Depth distribution of deuterium atoms and molecules in beryllium implanted with D ions, J. Nucl. Mater. 241-243, 1047.

    CAS  Google Scholar 

  10. Haasz, A.A. and Davis, J.W. (1997) Deuterium retention in beryllium, molybdenum, and tungsten at high fluences, J. Nucl. Mater. 241-243, 1076.

    CAS  Google Scholar 

  11. Mayer, M., (1997) Codeposition of deuterium with BeO at elevated temperatures, J. Nucl. Mater. 240, 164.

    Article  CAS  Google Scholar 

  12. Causey, R.A., and Walsh, D.S., (1998) Codeposition of deuterium with beryllium: letter to the editors, J. Nucl. Mater. 254, 84.

    Article  CAS  Google Scholar 

  13. Baldwin, D.L. and Billone, M.C. (1994) Diffusion/desorption of tritium from irradiated beryllium, J. Nucl. Mater. 212-215, 84.

    Article  Google Scholar 

  14. Atsumi, H., Tokura, S., and Miyake, M. (1988) Absorption and desorption of deuterium on graphite at elevated temperatures, J. Nucl. Mater. 155-157, 241.

    Article  Google Scholar 

  15. Causey, R.A., (1989) The interaction of tritium with graphite and its impact on tokamak operation, J. Nucl. Mater. 162-164, 151.

    Article  CAS  Google Scholar 

  16. Kanashenko, S.L., Gorodetsky, A.E., Chernikov, V.N., Markin, A.V., et al. (1996) Hydrogen absorption on and solubility in graphites, J. Nucl Mater. 233-237, 1207.

    Article  CAS  Google Scholar 

  17. Atsumi, H., Iseki, M., and Shikama, T. (1992) Hydrogen solubility and diffusivity in neutron-irradiated graphite, J. Nucl. Mater. 191-194, 368.

    CAS  Google Scholar 

  18. Wampler, W.R., Doyle, B.L., Causey, R.A., and Wilson, K. (1990) Trapping of deuterium at damage in graphite, J. Nucl. Mater. 176-177, 983.

    Article  CAS  Google Scholar 

  19. Causey, R.A., Wilson, K.L., Wampler, W.R., and Doyle, B.L. (1991) The effects of neutron irradiation on the trapping of tritium in graphite, Fus. Technol. 19, 1585.

    CAS  Google Scholar 

  20. Winter, J.(1987) Surface conditioning of fusion devices by carbonization: hydrogen recycling and wall pumping, J. Vac. Sci. Technol. A5, 2286.

    Google Scholar 

  21. Vietzke, E., and Phillipps, V. (1987) Hydrocarbon formation on carbon surfaces facing a hydrogen plasma, 3 rd Workshop on Carbon Materials for Fusion Applications, Julich, Oct. 2, 1987.

    Google Scholar 

  22. Jacob, W., and Moller, W.(1993) On the structure of thin hydrocarbon films, Appl. Phys. Lett. 63(13), 1771.

    Article  CAS  Google Scholar 

  23. Coad, J.P., Skorodumov, B.G., Ulanov, V.G., and Wu, C.H. (1996) Hydrogen isotope analysis of thick layers deposited in tokamaks, Vacuum 47(6-8), 985.

    Article  CAS  Google Scholar 

  24. Federici, G., Anderl, R., Brooks, J.N., Causey, R.A., et al. (1998) Tritium inventory in the ITER PFC’s: predictions, uncertainties, R&D status and priority needs, Fus. Eng.&Design 39-40, 445.

    Article  CAS  Google Scholar 

  25. Winter, J., Egger, J.G., Wienhold, P., Phillipps, V., et al. (1987) Properties of carbonization layers relevant to plasma-surface-interactions, Nucl. Instru. And Meth. B23, 538.

    Article  CAS  Google Scholar 

  26. Causey, R.A., Wampler, W.R., and Walsh, D. (1990) Comparison of the thermal stability of the codeposited carbon/hydrogen layer to that of the saturated implant layer, J. Nucl. Mater. 176-177, 987.

    Article  CAS  Google Scholar 

  27. Maruyama, K., Jacob, W., and Roth, J. (1999) Erosion behavior of soft, amorphous deuterated carbon films by heat treatment in air and under vacuum, J. Nucl. Mater. 264, 56.

    Article  CAS  Google Scholar 

  28. Haasz, A.A., Chiu, S., Pierre, J.E., and Gudimenko, Y.I. (1996) Thermo-oxidative erosion of amorphous hydrogenated carbon films, J. Vac. Sci. Technol. A 14(1), 184.

    Article  CAS  Google Scholar 

  29. Skinner, C.H., Kugel, H., Mueller, D., Doyle, B.L., et al. (1997) Tritium removal by CO2 laser heating, Proc. 17 th IEEE/NPSSSymp. On Fusion Engineering, Oct. 1997 (to be published).

    Google Scholar 

  30. Venhaus, T. and Causey, R. (2001) Analysis of Thermal Desorption Spectra to Understand the Migration of Hydrogen in Tungsten, Fus. Technol. 39, 868.

    CAS  Google Scholar 

  31. Causey, R., Wilson, K., Venhaus, T., and Wampler, W.R. (1999) Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons, J. Nucl. Mater. 266-269, 467.

    Article  CAS  Google Scholar 

  32. Venhaus, T.J., Causey, R.A., Doerner, R., and Abeln, T. (2001) Behavior of tungsten exposed to high fluences of low energy hydrogen isotopes, J. Nucl. Mater. 290-293, 505.

    Article  CAS  Google Scholar 

  33. Van Veen, A, Filius, J.A., De Vries, J., Bijkerk, K.R., et al. (1988) Hydrogen exchange with voids in tungsten observed with TDS and PA, J. Nucl. Mater. 155-157, 1113.

    Article  Google Scholar 

  34. Sze, F.C., Doerner, R.P., and Luckhardt, S. (1999) Investigation of plasma exposed W-1% La2O3 tungsten in a high ion flux, low ion energy, low carbon impurity plasma environment for the International Thermonuclear Experimental Reactor, J. Nucl. Mater. 264, 89.

    Article  CAS  Google Scholar 

  35. Oliver, B.M., Garner, F.A., Hamilton, M.L., Venhaus, T.J., et al. (2001) Hydrogen release from protonirradiated tungsten, J. Nucl. Mater. (to be published).

    Google Scholar 

  36. Franenfelder, R. (1968) Solution and diffusion of hydrogen in tungsten, J. Vac. Sci. Technol. 6(3), 388.

    Article  Google Scholar 

  37. Pisarev, A.A., Varava, A.V., and Zhdanov, S.K. (1995) Ion implantation of deuterium in tungsten, J. Nucl. Mater. 220-222, 926.

    Article  CAS  Google Scholar 

  38. Sakamota, R., Muroga, T., and Yoshida, N. (1995) Microstructural evolution induced by low energy hydrogen ion irradiation in tungsten, J. Nucl. Mater. 220-222, 819.

    Article  Google Scholar 

  39. Haasz, A.A., Poon M., and Davis, J. (1999) The effect of ion damage on deuterium trapping in tungsten, J. Nucl. Mater. 266-269, 520.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Causey, R.A., Venhaus, T.J. (2002). Hydrogen Isotopes Retention In Fusion Reactor Plasmafacing Materials: An Abbreviated Review. In: Hassanein, A. (eds) Hydrogen and Helium Recycling at Plasma Facing Materials. NATO Science Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0444-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0444-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0512-1

  • Online ISBN: 978-94-010-0444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics