Skip to main content

Fluorescent in situ hybridization in plant polytene chromosomes

  • Chapter
Chromosome Painting
  • 574 Accesses

Abstract

Polytene chromosomes are found in specialized tissues, with high metabolic activity, of a few angiosperm genera. They differ from Diptera polytenics in several aspects, mainly because their chromatids on each chromosome are not tightly paired, nor are they so highly endoreplicated as those of Diptera. In situ hybridization with isotopic and non-isotopic probes has been successfully used in plant polytene chromosomes, mainly in Phaseolus coccineus and Vigna unguiculata, where they have been best investigated. The results reported for mitotic and polytene chromosomes of these species, and a few others, are compared aiming to ascertain the efficiency and limitations of FISH in plant polytenics. In general, polytene chromosomes either from embryo suspensor cells of P. coccineus or from anther tapetal cells of V. unguiculata proved to be quite a suitable system for localizing DNA sequences by FISH. The partially unsynapsed chromatids, typically found in plant polytenics, seem to be the most important hindrance for a precise chromosome mapping. On the other hand, the interphase polytene nucleus is a valuable system for localizing FISH signals since they conserve a spatial organization similar to that of mitotic interphase and produce much amplified signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

FITC:

fluorescein isothiocyanate

NOR:

nuclear organizer region

PGIP:

polygalacturonase-inhibiting protein

References

  1. Agar DA, Sedat JW (1983). Three-dimensional architecture of a polytene nucleus. Nature 302: 676–681.

    Article  Google Scholar 

  2. Avanzi S, Durante M, Cionini PG, D’Amato F (1972). Cytological localization of ribosomal cistrons in polytene chromosomes of Phaseolus coccineus. Chromosoma 39: 191–203.

    Article  CAS  Google Scholar 

  3. Avanzi S, Nardelle MB, Cionini PG, D’Amato F (1971). Cytological localization of molecular hybrids between rRNA and DNA in the embryo suspensor cells of Phaseolus coccineus. Lincei Rend Sc Fls Mat e Nat 50: 357–361.

    Google Scholar 

  4. Brady T, Clutter ME (1972). Cytolocalization of ribosomal cistrons in plant polytene chromosomes. J Cell Biol 53: 827–832.

    Article  PubMed  CAS  Google Scholar 

  5. Brady T, Clutter ME (1974). Structure and replication of Phaseolus polytene chromosomes. Chromosoma 45: 63–79.

    Article  Google Scholar 

  6. Brodsky VYa, Uryvaeva IV (1985). Genome multiplication in growth and development. Cambridge: University Press (Development and Cell Biology, no. 15).

    Google Scholar 

  7. Carvalheira GMG (2001). Plant polytene chromosomes. Genet Mol Biol 23(Suppl.).

    Google Scholar 

  8. Carvalheira GMG, Cuadrado A, Guerra M. The distribution of some DNA sequences on polytene chromosomes of three Vigna species. Chrom Res (submitted).

    Google Scholar 

  9. Carvalheira GMG, Guerra M (1994). The polytene chromosomes of anther tapetum of some Phaseolus species. Cytologia 59: 211–217.

    Article  Google Scholar 

  10. Carvalheira GMG, Guerra M (1998). The polytene chromosomes of tapetal cells in the anther of some Vigna Savi cultivars and species. Cytobios 94: 161–168.

    Google Scholar 

  11. Carvalheira G, Pedrosa A, Guerra M (1998). The 5S rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L.) Walp. and V. radiata (L.) Wilczek revealed by in situ hybridization. Cytog Cell Genet 81: 107.

    Google Scholar 

  12. Cionini PG, Cavallini A, Cosi R, Fogli M (1982). Comparison of homologous polytene chromosomes in Phaseolus coccineus embryo suspensor cells: Morphological, autoradiographic and cytophotometric analyses. Chromosoma 86: 386–396.

    Article  Google Scholar 

  13. Coelho PA, Queiroz-Machado J, Hartl D, Sunkel CE (1998). Pattern of chromosomal localization of the Hoppel transposable element family in the Drosophila melanogaster subgroup. Chrom Res 6: 385–395.

    Article  PubMed  CAS  Google Scholar 

  14. Dimitri P (1997). Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100: 85–93.

    Article  PubMed  CAS  Google Scholar 

  15. Durante M, Cionini PG, Avanzi S, Cremonini R, D’Amato F (1977). Cytological localization of the genes for the four classes of ribosomal RNA (25S, 18S, 5,8S and 5S) in polytene chromosomes of Phaseolus coccineus. Chromosoma 60: 269–282.

    Article  PubMed  CAS  Google Scholar 

  16. Durante M, Cremonini R, Tagliasacchi AM, Forino LMC, Cionini PG (1987). Characterization and chromosomal localization of fast renaturing and satellite DNA sequences in Phaseolus coccineus. Protoplasma 137: 100–108.

    Article  CAS  Google Scholar 

  17. Frediani M, Cremonini R, Salvi G, Caprari C, Desiderio A, D’Ovidio R, Cervone F, Lorenzo G (1993). Cytological localization of the PGIP genes in the embryo suspensor cells of Phaseolus vulgaris L. Theor Appl Genet 87: 369–373.

    Article  CAS  Google Scholar 

  18. Galasso I, Harrison GE, Pignone D, Brandes A, Heslop-Harrison JS (1997). The distribution and organization of Tyl-copia-like retrotransposable elements in the genome of Vigna unguiculata (L.) Walp. (cowpea) and its relatives. Ann Bot 80: 327–333.

    Article  CAS  Google Scholar 

  19. Galasso I, Saponetti LS, Pignone D (1998). Cytotaxonomic studies in Vigna. IV. Variation of the number of active and silent rDNA sites in Vigna unguiculata populations. Caryologia 51: 95–104.

    Google Scholar 

  20. Galasso I, Schimidt T, Pignone D, Heslop-Herrison JS (1995). The molecular cytogenetics of Vigna unguiculata (L.) Walp.: The physical organisation and characterization of 18S–5,8S–25S rRNA genes, 5S rRNA genes, telomere like sequences and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91: 928–935.

    Article  CAS  Google Scholar 

  21. Guerra M, Carvalheira G (1994). Occurrence of polytene chromosomes in the anther tapetum of Vigna unguiculata L. (Walp.). J Hered 85: 43–46.

    Google Scholar 

  22. Guerra M, Kenton A (1996). Distribution of telomere DNA in mitotic and polytene nuclei of the anther tapetum of a tetraploid hybrid bean, Phaseolus vulgaris × P. acutifolius. Braz J Genet 19: 313–318.

    CAS  Google Scholar 

  23. Guerra M, Kenton A, Bennett M (1996). rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L.) Walp. and Phaseolus coccineus L. revealed by in situ hybridization. Ann Bot 78: 157–161.

    Article  CAS  Google Scholar 

  24. Lima-de-Faria A, Pero R, Avanzi S, Durante M, Stahle U, D’Amato F, Granström H (1975). Relation between ribosomal RNA genes and the DNA satellites of Phaseolus coccineus. Hereditas 79: 5–20.

    Article  PubMed  CAS  Google Scholar 

  25. Marks GE, Davies DR (1979). The cytology of cotyledon cells and the induction of giant polytene chromosomes in Pisum sativum. Protoplasma 101: 73–80.

    Article  Google Scholar 

  26. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999). Quantitative karyotyping and dual-color FISH mapping of 5S and 18S–25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233.

    PubMed  CAS  Google Scholar 

  27. Nagl W (1967). Die Riesenchromosomen von Phaseolus coccineus L.: Baueigentümlichkeiten, Strukturmodifikationen, zusätzliche Nukleolen und Vergleich mit den mitotischen Chromosomen. Österr BotZ 114: 171–182.

    Article  Google Scholar 

  28. Nagl W (1970). Inhibition of polytene chromosome formation in Phaseolus by polyploid mitosis. Cytologia 35: 252–258.

    Article  Google Scholar 

  29. Nagl W (1974). The Phaseolus suspensor and its polytene chromosomes. Zeit Pflanz Bd 73: 1–44.

    Google Scholar 

  30. Nagl W (1976). The polytenic antipodal cells of Scilla bifolia: DNA replication pattern and possibility of nucleolar DNA amplification. Cytobiologie 14: 165–170.

    Google Scholar 

  31. Nagl W ( 1981 ). Polytene chromosomes of plants. Inter Rev Cytol 73: 21–53.

    Article  CAS  Google Scholar 

  32. Nagl W (1991). Two human DNA sequences (aromatase, telomere) detected in Phaseolus (Fabaceae) by respective blot and in situ hybridization. Polish Bot Stud 2: 159–164.

    Google Scholar 

  33. Nenno M, Schumann K, Nagl W (1994). Detection of rRNA and phaseolin genes on polytene chromosomes of Phaseolus coccineus by fluorescence in situ hybridizations after pepsin pretreatment. Genome 37: 1018–1021.

    Article  PubMed  CAS  Google Scholar 

  34. Nenno M, Zink D, Nagl W (1996). Localization of different microsatellites and a minisatellite-like sequence on polytene chromosomes of Phaseolus coccineus. Annu Rep Bean Improv Coop 39: 245–246.

    Google Scholar 

  35. Nenno M, Zink D, Nagl W (1998). Distribution of simple sequence repeats on Phaseolus polytene chromosome. In: Lelley T (ed), Current topics in plant cytogenetics related to plant improvement. Tulln: WUV-Universitätsverlag, pp 109–110.

    Google Scholar 

  36. Schumann K, Baumann A, Nagl W (1990). Localization of phaseolin genes in the polytene chromosomes of Phaseolus coccineus (Leguminoseae). Genetica 83: 73–76.

    Google Scholar 

  37. Schweizer D (1976). Giemsa and fluorochrome banding of polytene chromosomes in Phaseolus vulgaris and P. coccineus. In: Jones K, Brandham PE (eds), Current chromosome research. Amsterdam: Elsevier, pp 51–56.

    Google Scholar 

  38. Schweizer D, Ambros P (1979). Analysis of nucleolus organizer regions (NORs) in mitotic and polytene chromosomes of Phaseolus coccineus by silver staining and Giemsa C-banding. Plant Syst Evol 132: 27–51.

    Article  Google Scholar 

  39. Sen O, Bhattacharya S, Chanda S (1989). Cytomorphological studies in some taxa of Phaseolus Linn, and Vigna Savi. Cytologia 54: 97–108.

    Article  Google Scholar 

  40. Tagliasacchi AM, Forino LMC, Frediani M, Cremonini R, Tucci G, Maggini F, Avanzi S (1993). Ribosomal RNA genes in Phaseolus coccineus. 2. Differential distribution of ribosomal cistrons and cytological localization of various replication units in polytene chromosomes of embryo suspensor. Cytobios 75: 131–147.

    Google Scholar 

  41. Talbot DR, Adango MJ, Slightom JL, Hall TC (1984). Size and organization of a multigene family encoding phaseolin, the major storage protein of Phaseolus vulgaris L. Mol Gen Genet 198: 42–49.

    Article  CAS  Google Scholar 

  42. Toubart P, Daroda L, Desiderio A, Salvi G, Cervone F, De Lorenzo G, Bergmann C, Darvill G, Albersheim P (1992). Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Plant Jour 2: 367–373.

    CAS  Google Scholar 

  43. Zheng J, Irifune K, Hirai K, Nakata M, Tanaka R, Morikawa H (1994). In situ hybridization to metaphase chromosomes in six species of Phaseolus and Vigna using ribosomal DNA as the probe. J Plant Res 107: 365–369.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guerra, M. (2001). Fluorescent in situ hybridization in plant polytene chromosomes. In: Sharma, A.K., Sharma, A. (eds) Chromosome Painting. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0330-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0330-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3840-9

  • Online ISBN: 978-94-010-0330-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics