Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 27))

Abstract

Collision-induced absorption (CIA) cross-sections of oxygen have been measured in the UV, Visible and near-IR regions from spectra recorded by Fourier Transform Spectroscopy at different pressures and room temperature. An extensive cross-sections dataset from 42000 to 7500 cm−1 (238–1330 nm) is presented. The separation procedure of the discrete and diffuse absorption features is described. Pressure and foreign gas effects are discussed, and a comparison with literature data is shown. A preliminary test on the influence of the choice of the dataset on atmospheric retrievals of O2, O3, BrO, and OClO is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Solomon, S., Portmann, R. W., Sanders, R. W., and Daniel, J. S. (1998) Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere, J. Geophys Res, 103 (D4), 3847–3858.

    Article  Google Scholar 

  2. Jenouvrier, A., Merienne, M.-F., Coquart, B., Carleer, M., Fally, S., Vandaele, A.C., Hermans, C, and Colin, R. (1999) Fourier transform spectroscopy of the O2 Herzberg bands: I — Rotational analysis, J. Mol. Spec., 198, 136–162.

    Article  Google Scholar 

  3. Jenouvrier, A. (1999) unpublished.

    Google Scholar 

  4. Hurtmans, D. (1999) private communication.

    Google Scholar 

  5. Fally, S., Vandaele, A. C., Carleer, M., Hermans, C., Jenouvrier, A., Merienne, M.-F., Coquart, B., and Colin, R. (2000) Fourier transform spectroscopy of the O2 Herzberg bands: III — Absorption cross sections of the collision-induced bands and of the Herzberg continuum, J. Mol. Spec., 204, 10–20.

    Article  Google Scholar 

  6. Ellis, J. W. and Kneser, H.O. (1933) Kombinationsbeziehungen im Absorptionsspektrum des flüssigen Sauerstoffs, Z. Phys, 86, 583–591.

    Google Scholar 

  7. Yoshino, K., Cheung, A. S.-C., Esmond, J. R., Parkinson, W. H., Freeman, D. E., Guberman, S. L., Jenouvrier, A., Coquart, B., and Merienne, M.-F. (1988) Improved absorption cross-sections of oxygen in the wavelength region 205–240 nm of the Herzberg continuum, Planet. Space Sci., 36 (12), 1469–1475.

    Article  Google Scholar 

  8. Shardanand Nhung. and Prasad Rao, A.D. (1977) Collision-induced absorption of O2 in the Herzberg continuum, J. Quant. Spectrosc. Radiat. Transfer, 17, 433–439.

    Article  Google Scholar 

  9. Zelikina, G.Ya., Bertsev, V. V., and Kiseleva, M. B. (1994) Absorption of compressed liquid oxygen and its mixtures with Ar, Kr, Xe, N2, and CF4 in the 200–280 nm spectral region, Optics and Spectroscopy, 77 (4), 579–583.

    Google Scholar 

  10. Newnham, D. and Ballard, J. (1998) Visible absorption cross sections and integrated absorption intensities of molecular oxygen (O2 and O4 ), J. Geophys. Res., 103, D22, 28801–28816.

    Google Scholar 

  11. Greenblatt, G. D., Orlando, J. J., Burkholder, J. B., and Ravishankara, A. R. (1990) Absorption measurements of oxygen beween 330 and 1140 nm, J. Geophys. Res., 95, 18577–18582.

    Article  Google Scholar 

  12. Blickensderfer, R. P. and Ewing, G. E. (1969) Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. II. The simultaneous transition CHEN CONG THUC and CHEN CONG THUC. J. Chem. Phys., 51, 5284–5289.

    Article  Google Scholar 

  13. Dianov-Klokov, V.I. (1966) Absorption by gaseous oxygen and its mixtures with nitrogen in the 2800–2350 Å range, Opt. Spectrosc., 2, 233–236.

    Google Scholar 

  14. Shardanand Nhung. (1977) Nitrogen-induced absorption of oxygen in the Herzberg continuum, J. Quant. Spectrosc. Radiat. Transfer, 18, 525–530.

    Article  Google Scholar 

  15. Shardanand Nhung. (1978) Temperature effect on nitrogen-induced absorption of oxygen in the Herzberg continuum, J. Quant. Spectrosc. Radiat. Transfer, 20, 265–270.

    Article  Google Scholar 

  16. Oshima, G. Ya., Yakamoto, Y., and Koda, S. (1995) Pressure effect of foreign gases on the Herzberg photoabsorption of oxygen, J. Phys. Chem., 99, 11830–11833.

    Article  Google Scholar 

  17. Fayt, C. and Van Roozendael, M. (2001) WinDOAS software user manual.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hermans, C. et al. (2003). Absorption Cross-section of the Collision-Induced Bands of Oxygen from the UV to the NIR. In: Camy-Peyret, C., Vigasin, A.A. (eds) Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. NATO Science Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0025-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0025-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1596-0

  • Online ISBN: 978-94-010-0025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics